Objectif
One of the new developments in theoretical physics of the past few years has been the application of concepts of string theory to condensed matter systems, the AdS/CFT duality being a prime example of it.
Matrix models provide a similar opportunity. In fact, they are ubiquitous in virtually every branch of theoretical physics: from nuclear to condense matter physics, from 2-D quantum gravity to number theory, from statistical physics to string theory, and so on. Even if the physical interpretation of the matrices in the various fields can be quite different, they all share the same mathematical formulation, which makes the possibility of cross-fertilization between the different areas very fruitful.
The aim of this project is the study of a class of non-standard matrix models within the context of condensed matter physics, by taking advantage of existing results from string theory. These models, known as weakly confined, are characterized by potentials that asymptotically grow like a log-square and thus do not belong to the (polynomial) Wigner-Dyson universality class, but are still exactly solvable through their orthogonal polynomials.
One of the main reasons of interest is that they present a spontaneous breaking of rotational invariance and could therefore be an excellent candidate for studying analytically the Anderson transition between a conducting and an insulating phase, a long standing problem with several experimental applications.
Interestingly, models with this asymptotic behavior have been recently considered in the field of topological strings and ABJM theory, but these results have not been translated yet to the condensed matter community and can provide new tools to understand the SSB mechanism.
The M.I.T. environment is a perfect and unique place to pursue this kind of research, due to the presence of leading experts in the different areas of physics involved, several of them already involved in similar lines of research.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences naturelles sciences physiques physique de la matière condensée
- sciences naturelles mathématiques mathématiques pures arithmétique
- sciences naturelles sciences physiques physique théorique théorie des cordes
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
FP7-PEOPLE-2010-IOF
Voir d’autres projets de cet appel
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Coordinateur
34136 Trieste
Italie
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.