Skip to main content
European Commission logo
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Inhalt archiviert am 2024-06-18

How force regulates cell function: a molecular and cellular outlook

Ziel

Force is ubiquitous in nature and physical stimuli are crucial for cell function. How cells process forces determines key physiological processes such as cell growth and differentiation, in which cells divide or differentiate according to the chemical and physical cues cells receive from the extracellular matrix. Physical stimuli have also been involved in the development of pathological processes, especially those in which cells lose the proper physical communication with the environment, such as cancer and metastasis formation. The major components of the mechanotransduction signaling pathways that transmit and translate these physical messages will most likely to be the molecules that directly sense force from the extracellular matrix. These molecules are integrins and the proteins that link them to the cytoskeleton. Here, I propose a multidisciplinary approach aimed to elucidate how force can modulate cellular behaviour. The project will focus on (i) determining how cells sense, produce and interpret forces and (ii) the cellular outcomes resulting from these processes. First, a nanotechnological suite composed of magnetic tweezers, and siRNA technology will be developed and employed to determine the roles of the molecules involved in these mechanical pathways. Second, the molecular mechanisms that trigger the interaction of proteins under force application will be studied. Several biophysical techniques such as magnetic tweezers, Atomic Force Microscopy (AFM), Total Internal Reflection Fluorescence (TIRF), and Fluorescence Resonance Energy Transfer (FRET) will be used here. Finally, a comparative study of the effect of force in normal and malignant cells will be accomplished. It will be tested whether or not these pathways are involved in the expression of genes in the nucleus, and the ability of normal and malignant cells to respond to external forces and to apply forces on their substrates. Magnetic tweezers, and elastic pillars will be used here.

Aufforderung zur Vorschlagseinreichung

ERC-2011-StG_20101109
Andere Projekte für diesen Aufruf anzeigen

Gastgebende Einrichtung

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
EU-Beitrag
€ 1 841 836,60
Adresse
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ LONDON
Vereinigtes Königreich

Auf der Karte ansehen

Region
London Inner London — West Camden and City of London
Aktivitätstyp
Higher or Secondary Education Establishments
Kontakt Verwaltung
Shaun Power (Mr.)
Hauptforscher
Armando Emeterio Del Río Hernández (Dr.)
Links
Gesamtkosten
Keine Daten

Begünstigte (2)