Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Contenu archivé le 2024-05-30

Rapid Adaptive Nonlinear Gradient Encoding for Magnetic Resonance Imaging

Objectif

The project is aimed at the development of novel approaches for flexible signal localisation and encoding in Magnetic Resonance Imaging (MRI) for applications in neuroscience, neurology, oncology and further areas. The Rapid Adaptive Nonlinear Gradient Encoding for Magnetic Resonance Imaging (RANGE) methodology is based on the concept of applying localised, generally nonlinear encoding fields to faster, customised and anatomically-aligned imaging. The increase in encoding efficiency originates from several key factors: (i) local fields can be tailored to reduce peripheral nerve stimulation and power requirements to allow for faster switching; (ii) localised character of the fields requires less encoding steps and (iii) ability to select curved anatomy-adapted regions allows to cover target volumes with less slices; (iv) local encoding along curved surfaces reduces partial volume effects, delivering data of identical quality with lower nominal resolution compared to a standard approach. Each of these aspects is expected to contribute a factor of at least 2 to 3, resulting in a total encoding efficiency boost of an order of magnitude. Flexible fields will also be used for very high order localised dynamic shimming, allowing to further increase acquired data quality.
The technological backbone for the RANGE principle will be provided by a novel highly-integrated switchable matrix gradient coil. The new coil type will be able to generate both local nonlinear and global linear fields. Upon proper industrial realisation it is expected to match or even outperform traditional linear gradient coils, while providing an ultimate flexibility in generating rapidly switched localised fields.
Hardware, methodology and operator interface to the scanning process will be developed to handle signal selection, localisation and encoding in curved nonlinear coordinates to streamline the application development and facilitate the transfer to clinical practice and neuroscientific research.

Appel à propositions

ERC-2011-StG_20101109
Voir d’autres projets de cet appel

Régime de financement

ERC-SG - ERC Starting Grant

Institution d’accueil

UNIVERSITAETSKLINIKUM FREIBURG
Contribution de l’UE
€ 1 497 672,00
Adresse
HUGSTETTER STRASSE 49
79106 Freiburg
Allemagne

Voir sur la carte

Région
Baden-Württemberg Freiburg Freiburg im Breisgau, Stadtkreis
Type d’activité
Higher or Secondary Education Establishments
Chercheur principal
Maxim Zaitsev (Dr.)
Contact administratif
Gerhard Henninger (Mr.)
Liens
Coût total
Aucune donnée

Bénéficiaires (1)