Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Contenuto archiviato il 2024-05-27

VASPT2: a method for targeted quantum dynamics of hydrogen transfer reactions

Obiettivo

"In this proposal, we develop a cutting-edge computational tool for simulating molecular dynamics at the quantum level that will be applied to understand the dynamics of various chemical phenomena, especially for hydrogen-transfer reactions.

Hydrogen-transfer reactions are one of the most basic elementary chemical reactions, and play vital roles in a number of industrially or biologically intriguing systems. Despite their importance, experimental studies of hydrogen-transfer reactions have faced several difficulties. Experimentally, it is difficult to observe hydrogen-transfer reactions directly, owing to their short time scale. In addition, the analysis of experimental results is often challenging, because the current interesting systems are usually large systems (e.g. enzymes).

There is thus a strong demand for computational software that can accurately simulate hydrogen-transfer reactions. At this moment, all existing molecular dynamics methods do not satisfy this demand. The methods that can precisely describe hydrogen-transfer reactions are only applicable for small systems. Others suffer from unreliability owing to neglected or approximated quantum effects.

In this context, we propose a novel ab initio vibrational wave-function theory to describe general chemical reactions in large molecules with a conclusive accuracy. We call this the Vibrational Active Space Second-order Perturbation Theory (VASPT2). This method exploits a variational method for strong quantum effects among small degrees of freedom, and employs a perturbative method for weak quantum effects in a whole system to achieve quantitative results. The proposed method compromises the applicability and reliability (accuracy) by a well-balanced manner. As an application of this method, we will describe the hydrogen-transfer reaction of AADH (aromatic amine dehydrogenase) to answer the question how quantum tunneling effects are important in enzymes."

Invito a presentare proposte

FP7-PEOPLE-2011-IIF
Vedi altri progetti per questo bando

Coordinatore

UNIVERSITY OF BRISTOL
Contributo UE
€ 200 371,80
Indirizzo
BEACON HOUSE QUEENS ROAD
BS8 1QU Bristol
Regno Unito

Mostra sulla mappa

Regione
South West (England) Gloucestershire, Wiltshire and Bristol/Bath area Bristol, City of
Tipo di attività
Higher or Secondary Education Establishments
Contatto amministrativo
Audrey Michael (Ms.)
Collegamenti
Costo totale
Nessun dato