Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Learning to read the code of large neural populations

Objective

Information is represented and transmitted in the brain by the joint activity of large groups of neurons. Understanding how information is “written” in these population patterns, and how it is read and processed, is a fundamental question in neuroscience. Yet, because of the huge number of potential activity patterns and complexity of natural stimuli, most of our understanding of the code relies on single neuron studies. We will extend and apply mathematical tools from information theory, machine learning, and physics, to overcome this ‘curse of dimensionality’ and build neural dictionaries relating activity and stimuli at an unparalleled resolution of hundreds of neurons. To identify the fundamental design principles of neural population codes we will study the spatial and spatio-temporal activity of hundreds of neurons from the retina, tectum, and cortical networks responding to naturalistic and artificial stimuli. Our primary goals are: (a) to characterize the encoding ‘codebooks’ of large populations of neurons, and the effect of network noise on encoding, and thus construct a thesaurus for neural populations, (b) use this thesaurus to develop new family of decoders of population activity which would be biologically plausible and accurate for natural stimuli, (c) characterize adaptation at the level of the code of networks of neurons, and the effect of learning on population neural codes, (d) explore “learnability” as a key feature of the neural code, and construct biologically plausible models of how the brain can learn to read population codes and compute, and (e) merge these ideas into a new mathematical framework that will connect the architecture of neural interaction networks and the properties of their neural codes. Our work will establish a new mathematical framework for studying the neural code, which will entail important implications for neural prostheses and brain machine interfaces, as well as brain-inspired learning algorithms.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2012-StG_20111109
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

WEIZMANN INSTITUTE OF SCIENCE
EU contribution
€ 1 438 996,00
Address
HERZL STREET 234
7610001 Rehovot
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0