Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Learning to read the code of large neural populations

Objectif

Information is represented and transmitted in the brain by the joint activity of large groups of neurons. Understanding how information is “written” in these population patterns, and how it is read and processed, is a fundamental question in neuroscience. Yet, because of the huge number of potential activity patterns and complexity of natural stimuli, most of our understanding of the code relies on single neuron studies. We will extend and apply mathematical tools from information theory, machine learning, and physics, to overcome this ‘curse of dimensionality’ and build neural dictionaries relating activity and stimuli at an unparalleled resolution of hundreds of neurons. To identify the fundamental design principles of neural population codes we will study the spatial and spatio-temporal activity of hundreds of neurons from the retina, tectum, and cortical networks responding to naturalistic and artificial stimuli. Our primary goals are: (a) to characterize the encoding ‘codebooks’ of large populations of neurons, and the effect of network noise on encoding, and thus construct a thesaurus for neural populations, (b) use this thesaurus to develop new family of decoders of population activity which would be biologically plausible and accurate for natural stimuli, (c) characterize adaptation at the level of the code of networks of neurons, and the effect of learning on population neural codes, (d) explore “learnability” as a key feature of the neural code, and construct biologically plausible models of how the brain can learn to read population codes and compute, and (e) merge these ideas into a new mathematical framework that will connect the architecture of neural interaction networks and the properties of their neural codes. Our work will establish a new mathematical framework for studying the neural code, which will entail important implications for neural prostheses and brain machine interfaces, as well as brain-inspired learning algorithms.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

ERC-2012-StG_20111109
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-SG - ERC Starting Grant

Institution d’accueil

WEIZMANN INSTITUTE OF SCIENCE
Contribution de l’UE
€ 1 438 996,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Bénéficiaires (1)

Mon livret 0 0