Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Multi-coRe, multi-level, WDM-enAbled embedded optical enGine for Terabit board-to-board and rack-to-rack parallel optics

Project description


Core and disruptive photonic technologies
MIRAGE aims to implement cost-optimized components for terabit optical interconnects introducing new multiplexing concepts through the development of a flexible, future-proof 3D "optical engine".
Data centers are becoming the hot spots of internet, and content providers request a technology for practical and cost-effective upgrade to Tb/s capacities. MIRAGE is an industry-driven photonic integration project that aims to provide this technology and present a viable path to scale datarate (+640%), power (-70%) and no. of fibres (-90%) by squeezing bulk parallel optical components into 3D integrated chips. MIRAGE will introduce new dimensions of parallelization in interconnects to gracefully upgrade capacity and density combining for the first time multi-core fiber multiplexing, coarse WDM multiplexing and multi-level modulation. To address cost, performance and volume MIRAGE relies on the strengths of Si photonics and electronics and extends it using the right synergies with established photonic integration materials (InP and glass) to provide a future-proof, upgradeable technology. MIRAGE optical board will provide efficient (2dB) vertical coupling for photonic 3D integration and compact wavelength multiplexing on 8” Si wafers. MIRAGE will exploit the efficiency of VCSEL technology to develop the first SOI-compatible 40Gb/s InP VCSELs at 1550nm and will upgrade them to 80Gb/s through simple multi-level modulation. To further address parallelization, MIRAGE will integrate the InP VCSELs in monolithic WDM arrays. Leveraging advances in single-mode multicore fiber MIRAGE aims to mitigate cabling cost and size and reduce chip area for pigtailing by developing low-cost glass multi-core interfaces with simple assembly on the SOI chip. 4-element silicon TIA and VCSEL driver arrays will be implemented for 40 Gbaud multi-level modulation. Low-cost industry-compatible 3D assembly techniques will be optimized for high-speed electro-optic chips, bringing a >50-fold improvement in electrical vias capacitance. MIRAGE will deliver fully functional 3D PICs: a) 208 Gb/s board-level interconnect b) 320 Gb/s QSFP active optical cable (AOC) c) 960 Gb/s CXP AOC with QSFP breakout.

Data centers are becoming the hot spots of internet, and content providers request a technology for practical and cost-effective upgrade to Tb/s capacities. MIRAGE is an industry-driven photonic integration project that aims to provide this technology and present a viable path to scale datarate (+640%), power (-70%) and no. of fibrer (-90%) by squeezing bulk parallel optical components into 3D integrated chips. MIRAGE will introduce new dimensions of parallelization in interconnects to gracefully upgrade capacity and density combining for the first time multi-core fiber multiplexing, coarse WDM multiplexing and multi-level modulation. To address cost, performance and volume MIRAGE relies on the strengths of Si photonics and electronics and extends it using the right synergies with established photonic integration materials (InP and glass) to provide a future-proof, upgradeable technology. MIRAGE optical board will provide efficient (2dB) vertical coupling for photonic 3D integration and compact wavelength multiplexing on 8" Si wafers. MIRAGE will exploit the efficiency of VCSEL technology to develop the first SOI-compatible 40Gb/s InP VCSELs at 1550nm and will upgrade them to 80Gb/s through simple multi-level modulation. To further address parallelization, MIRAGE will integrate the InP VCSELs in monolithic WDM arrays. Leveraging advances in single-mode multicore fiber MIRAGE aims to mitigate cabling cost and size and reduce chip area for pigtailing by developing low-cost glass multi-core interfaces with simple assembly on the SOI chip. 4-element silicon TIA and VCSEL driver arrays will be implementedfor 40 Gbaud multi-level modulation. Low-cost industry-compatible 3D assembly techniques will be optimized for high-speed electro-optic chips, bringing a >50-fold improvement in electrical vias capacitance. MIRAGE will deliver fully functional 3D PICs: a) 208 Gb/s board-level interconnect b) 320 Gb/s QSFP active optical cable (AOC) c) 960 Gb/s CXP AOC with QSFP breakout.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-ICT-2011-8
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP - Collaborative project (generic)

Coordinator

EREVNITIKO PANEPISTIMIAKO INSTITOUTO SYSTIMATON EPIKOINONION KAI YPOLOGISTON
EU contribution
€ 447 398,00
Address
PATISION 42
106 82 ATHINA
Greece

See on map

Region
Αττική Aττική Κεντρικός Τομέας Αθηνών
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (7)

My booklet 0 0