Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-05-30

Invariant Representations for High-Dimensional Signal Classifications

Obiettivo

Considerable amounts of high-dimensional signals are continuously being acquired, whether audio, images, videos, or specialized signals for example in geophysics or medicine. Automatic classification and retrieval is strongly needed to analyze and access these massive data sets, but current algorithms often produce too many errors. For high-dimensional signals, supervised classification algorithms are typically applied to reduced ``feature vectors''. These feature representations are specialized for each signal modality, for example speech, music, images, videos or seismic signals. This proposal aims at unifying these approaches to improve classification performances, by developing a general mathematical and algorithmic framework to optimize representations for classification. Classification errors result from representations which are not sufficiently informative or which maintain too much variability. The central challenge is to understand how to construct stable, informative invariants, while facing progressively more complex sources of variability. The first task concentrates on invariants to the action of finite groups including translations, rotations and scalings, while preserving stability to deformations. The second task addresses unsupervised representation learning from training data. The third task explores stable representations of invariant geometric signal structures, which is an outstanding problem.These challenges involve building new mathematical tools in harmonic and wavelet analysis, geometry and statistics, in close interaction with numerical algorithms. Classification applications to audio, images, video signals or geophysical signals are expected to serve as a basis for groundbreaking technological advances.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

ERC-2012-ADG_20120216
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-AG - ERC Advanced Grant

Istituzione ospitante

ECOLE NORMALE SUPERIEURE
Contributo UE
€ 2 316 000,00
Indirizzo
45, RUE D'ULM
75230 Paris
Francia

Mostra sulla mappa

Regione
Ile-de-France Ile-de-France Paris
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Beneficiari (1)

Il mio fascicolo 0 0