Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-05-29

Statistical Inference and Malliavin Calculus

Objetivo

Eulalia Nualart (the researcher, hereafter) broadly works in the field of Stochastic Calculus of Variations (Malliavin Calculus), and its applications to stochastic differential equations (SDEs) and stochastic partial differential equations (SPDEs). In the last years, she has become interested in two new applications of the Malliavin calculus, which are Statistical Inference for SDEs and applications to Mathematical Finance.
The aim of this proposal is to consider two different types of SDES: (i) SDEs driven by the sum of a Brownian motion and a Poisson random measure; (ii) SDEs driven by fractional Brownian motion. The coefficients of both SDEs are assumed to depend on some parameter that needs to be estimated in the following cases: (a) when the trajectory of the SDE is observed continuously during a fixed time interval; (b) when the trajectory is observed discretely at n fixed times. Both cases will be studied, but the proposal concentrates in case (b), as is a more challenging and realistic problem.
The proposal is divided into three research projects whose goals are: (1) Obtain upper and lower bounds for the density of the solution to the two types of SPDEs (i) and (ii), by means of the Malliavin Calculus; (2) Use these bounds in order to prove the local asymptotic normality (LAN) for the models (i) and (ii), and then apply Hajek-Lecam's theorem to obtain asymptotically efficient estimators for the parameter of the equations; (3) Study Monte Carlo methods and exact simulation of the SDE model with jumps (i), and apply these computational methods to the following financial problems: jump volatility models and numerical computations of greeks.
In addition to the three research projects, the proposal aims to develop a research network on Stochastic Analysis and applications, by organizing weekly seminars and two international conferences at the University Pompeu Fabra, where the researcher has been offered a permanent associate professor position.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

FP7-PEOPLE-2012-CIG
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MC-CIG - Support for training and career development of researcher (CIG)

Coordinador

UNIVERSIDAD POMPEU FABRA
Aportación de la UE
€ 100 000,00
Dirección
PLACA DE LA MERCE, 10-12
08002 Barcelona
España

Ver en el mapa

Región
Este Cataluña Barcelona
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos
Mi folleto 0 0