Ziel
Eulalia Nualart (the researcher, hereafter) broadly works in the field of Stochastic Calculus of Variations (Malliavin Calculus), and its applications to stochastic differential equations (SDEs) and stochastic partial differential equations (SPDEs). In the last years, she has become interested in two new applications of the Malliavin calculus, which are Statistical Inference for SDEs and applications to Mathematical Finance.
The aim of this proposal is to consider two different types of SDES: (i) SDEs driven by the sum of a Brownian motion and a Poisson random measure; (ii) SDEs driven by fractional Brownian motion. The coefficients of both SDEs are assumed to depend on some parameter that needs to be estimated in the following cases: (a) when the trajectory of the SDE is observed continuously during a fixed time interval; (b) when the trajectory is observed discretely at n fixed times. Both cases will be studied, but the proposal concentrates in case (b), as is a more challenging and realistic problem.
The proposal is divided into three research projects whose goals are: (1) Obtain upper and lower bounds for the density of the solution to the two types of SPDEs (i) and (ii), by means of the Malliavin Calculus; (2) Use these bounds in order to prove the local asymptotic normality (LAN) for the models (i) and (ii), and then apply Hajek-Lecam's theorem to obtain asymptotically efficient estimators for the parameter of the equations; (3) Study Monte Carlo methods and exact simulation of the SDE model with jumps (i), and apply these computational methods to the following financial problems: jump volatility models and numerical computations of greeks.
In addition to the three research projects, the proposal aims to develop a research network on Stochastic Analysis and applications, by organizing weekly seminars and two international conferences at the University Pompeu Fabra, where the researcher has been offered a permanent associate professor position.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Sozialwissenschaften Wirtschaftswissenschaften Wirtschaftswissenschaft Ökonometrie
- Naturwissenschaften Informatik und Informationswissenschaften Informatik
- Naturwissenschaften Mathematik reine Mathematik mathematische Analyse Differentialgleichungen partielle Differentialgleichungen
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
FP7-PEOPLE-2012-CIG
Andere Projekte für diesen Aufruf anzeigen
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
MC-CIG - Support for training and career development of researcher (CIG)
Koordinator
08002 Barcelona
Spanien
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.