Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-05-29

Statistical Inference and Malliavin Calculus

Objectif

Eulalia Nualart (the researcher, hereafter) broadly works in the field of Stochastic Calculus of Variations (Malliavin Calculus), and its applications to stochastic differential equations (SDEs) and stochastic partial differential equations (SPDEs). In the last years, she has become interested in two new applications of the Malliavin calculus, which are Statistical Inference for SDEs and applications to Mathematical Finance.
The aim of this proposal is to consider two different types of SDES: (i) SDEs driven by the sum of a Brownian motion and a Poisson random measure; (ii) SDEs driven by fractional Brownian motion. The coefficients of both SDEs are assumed to depend on some parameter that needs to be estimated in the following cases: (a) when the trajectory of the SDE is observed continuously during a fixed time interval; (b) when the trajectory is observed discretely at n fixed times. Both cases will be studied, but the proposal concentrates in case (b), as is a more challenging and realistic problem.
The proposal is divided into three research projects whose goals are: (1) Obtain upper and lower bounds for the density of the solution to the two types of SPDEs (i) and (ii), by means of the Malliavin Calculus; (2) Use these bounds in order to prove the local asymptotic normality (LAN) for the models (i) and (ii), and then apply Hajek-Lecam's theorem to obtain asymptotically efficient estimators for the parameter of the equations; (3) Study Monte Carlo methods and exact simulation of the SDE model with jumps (i), and apply these computational methods to the following financial problems: jump volatility models and numerical computations of greeks.
In addition to the three research projects, the proposal aims to develop a research network on Stochastic Analysis and applications, by organizing weekly seminars and two international conferences at the University Pompeu Fabra, where the researcher has been offered a permanent associate professor position.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP7-PEOPLE-2012-CIG
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MC-CIG - Support for training and career development of researcher (CIG)

Coordinateur

UNIVERSIDAD POMPEU FABRA
Contribution de l’UE
€ 100 000,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée
Mon livret 0 0