Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

Optimization Problems on Geometric Range Spaces

Obiettivo

Computational geometry is a subfield of theoretical computer science devoted to the design and
implementation of geometric algorithms, as well as to their analysis, and to the combinatorial
structure that they manipulate. In particular, computational geometry encompasses a diversity of
optimization problems. It is often infeasible in practice to find the optimal solution of a geometric optimization problem. This is because the optimum might typically be hard to compute. This suggests that instead of insisting on computing the exact solution for optimization problems, one should be satisfied with a possibly suboptimal solution that approximates the optimum reasonably well.

The goal of this proposal is to consider optimization problems involving geometric objects in low dimensions, and design efficient algorithms that guarantee a good approximation for their solutions. Such problems have been well studied in abstract settings (that is, when the objects are abstract and no geometric properties are known), but their geometric variants have received much less attention, and the solutions to most of these problems have still remained elusive.

This project suggests an interdisciplinary challenge. On the theoretical front, it aims to develop a set of mathematical tools taken from discrete geometry, such as geometric arrangements and epsilon nets, which exploit the geometric structure of the given setting. In fact, such tools can be exploited on a broader set of problems, and lie beyond the scope of the problems presented in this proposal. On the applied front, this problems have applications to other disciplines as sensor networking, computer graphics, geographic information systems, machine learning and more. In fact, the PI is collaborating with researchers from sensor networking and learning where she applies such mathematical tools in order to solve problems from the real world.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

FP7-PEOPLE-2012-CIG
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MC-CIG - Support for training and career development of researcher (CIG)

Coordinatore

TEL AVIV UNIVERSITY
Contributo UE
€ 100 000,00
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato
Il mio fascicolo 0 0