Objectif
The goal of this project is to develop new techniques combining tools from dynamical systems, analysis and differential geometry to study the existence and properties of invariant manifolds arising from solutions to differential equations. These structures are relevant in the study of the qualitative properties of ODE and PDE and appear very naturally in important questions of mathematical physics. This proposal can be divided in three blocks: the study of periodic orbits and related dynamical structures of vector fields which are solutions to the Euler, Navier-Stokes or Magnetohydrodynamics equations (in the spirit of what is called topological fluid mechanics); the analysis of critical points and level sets of functions which are solutions to some elliptic or parabolic problems (e.g.
eigenfunctions of the Laplacian or Green's functions); a very novel approach based on the nodal sets of a PDE to study the limit cycles of planar vector fields. With the introduction by the Principal Investigator, in collaboration with A. Enciso, of totally new techniques to prove the existence of solutions with prescribed invariant sets for a wide range of PDE, it is now possible to approach these apparently unrelated problems using the same strategy: the construction of local solutions with robust invariant sets and the subsequent uniform approximation by global solutions. Our recent proof of a well known conjecture in topological fluid mechanics, which was popularized by the works of Arnold and Moffatt in the 1960's, illustrates the power of this method. In this project, I intend to delve into and extend the pioneering techniques that we have developed to go significantly beyond the state of the art in some long-standing open problems on invariant manifolds posed by Ulam, Arnold and Yau, among others. This project will allow me to establish an internationally recognized research group in this area at the Instituto de Ciencias Matemáticas (ICMAT) in Madrid.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/fr/web/eu-vocabularies/euroscivoc.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/fr/web/eu-vocabularies/euroscivoc.
- sciences naturelles mathématiques mathématiques appliquées physique mathématique
- sciences naturelles mathématiques mathématiques appliquées systèmes dynamiques
- sciences naturelles mathématiques mathématiques pures géométrie
- sciences naturelles mathématiques mathématiques pures analyse mathématique équations différentielles équations différentielles partielles
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
ERC-2013-StG
Voir d’autres projets de cet appel
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Institution d’accueil
28006 MADRID
Espagne
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.