Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

Invariant manifolds in dynamical systems and PDE

Obiettivo

The goal of this project is to develop new techniques combining tools from dynamical systems, analysis and differential geometry to study the existence and properties of invariant manifolds arising from solutions to differential equations. These structures are relevant in the study of the qualitative properties of ODE and PDE and appear very naturally in important questions of mathematical physics. This proposal can be divided in three blocks: the study of periodic orbits and related dynamical structures of vector fields which are solutions to the Euler, Navier-Stokes or Magnetohydrodynamics equations (in the spirit of what is called topological fluid mechanics); the analysis of critical points and level sets of functions which are solutions to some elliptic or parabolic problems (e.g.
eigenfunctions of the Laplacian or Green's functions); a very novel approach based on the nodal sets of a PDE to study the limit cycles of planar vector fields. With the introduction by the Principal Investigator, in collaboration with A. Enciso, of totally new techniques to prove the existence of solutions with prescribed invariant sets for a wide range of PDE, it is now possible to approach these apparently unrelated problems using the same strategy: the construction of local solutions with robust invariant sets and the subsequent uniform approximation by global solutions. Our recent proof of a well known conjecture in topological fluid mechanics, which was popularized by the works of Arnold and Moffatt in the 1960's, illustrates the power of this method. In this project, I intend to delve into and extend the pioneering techniques that we have developed to go significantly beyond the state of the art in some long-standing open problems on invariant manifolds posed by Ulam, Arnold and Yau, among others. This project will allow me to establish an internationally recognized research group in this area at the Instituto de Ciencias Matemáticas (ICMAT) in Madrid.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

ERC-2013-StG
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-SG - ERC Starting Grant

Istituzione ospitante

AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS
Contributo UE
€ 1 260 041,87
Indirizzo
CALLE SERRANO 117
28006 MADRID
Spagna

Mostra sulla mappa

Regione
Comunidad de Madrid Comunidad de Madrid Madrid
Tipo di attività
Research Organisations
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Beneficiari (1)

Il mio fascicolo 0 0