Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-06-18

Invariant manifolds in dynamical systems and PDE

Ziel

The goal of this project is to develop new techniques combining tools from dynamical systems, analysis and differential geometry to study the existence and properties of invariant manifolds arising from solutions to differential equations. These structures are relevant in the study of the qualitative properties of ODE and PDE and appear very naturally in important questions of mathematical physics. This proposal can be divided in three blocks: the study of periodic orbits and related dynamical structures of vector fields which are solutions to the Euler, Navier-Stokes or Magnetohydrodynamics equations (in the spirit of what is called topological fluid mechanics); the analysis of critical points and level sets of functions which are solutions to some elliptic or parabolic problems (e.g.
eigenfunctions of the Laplacian or Green's functions); a very novel approach based on the nodal sets of a PDE to study the limit cycles of planar vector fields. With the introduction by the Principal Investigator, in collaboration with A. Enciso, of totally new techniques to prove the existence of solutions with prescribed invariant sets for a wide range of PDE, it is now possible to approach these apparently unrelated problems using the same strategy: the construction of local solutions with robust invariant sets and the subsequent uniform approximation by global solutions. Our recent proof of a well known conjecture in topological fluid mechanics, which was popularized by the works of Arnold and Moffatt in the 1960's, illustrates the power of this method. In this project, I intend to delve into and extend the pioneering techniques that we have developed to go significantly beyond the state of the art in some long-standing open problems on invariant manifolds posed by Ulam, Arnold and Yau, among others. This project will allow me to establish an internationally recognized research group in this area at the Instituto de Ciencias Matemáticas (ICMAT) in Madrid.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: https://op.europa.eu/de/web/eu-vocabularies/euroscivoc.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

ERC-2013-StG
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-SG - ERC Starting Grant

Gastgebende Einrichtung

AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS
EU-Beitrag
€ 1 260 041,87
Adresse
CALLE SERRANO 117
28006 MADRID
Spanien

Auf der Karte ansehen

Region
Comunidad de Madrid Comunidad de Madrid Madrid
Aktivitätstyp
Research Organisations
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten

Begünstigte (1)

Mein Booklet 0 0