Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Automorphic q-series and their application

Objectif

This proposal aims to unravel mysteries at the frontier of number theory and other areas of mathematics and physics. The main focus will be to understand and exploit “modularity” of q-hypergeometric series. “Modular forms are functions on the complex plane that are inordinately symmetric.” (Mazur) The motivation comes from the wide-reaching applications of modularity in combinatorics, percolation, Lie theory, and physics (black holes).

The interplay between automorphic forms, q-series, and other areas of mathematics and physics is often two-sided. On the one hand, the other areas provide interesting examples of automorphic objects and predict their behavior. Sometimes these even motivate new classes of automorphic objects which have not been previously studied. On the other hand, knowing that certain generating functions are modular gives one access to deep theoretical tools to prove results in other areas. “Mathematics is a language, and we need that language to understand the physics of our universe.”(Ooguri) Understanding this interplay has attracted attention of researchers from a variety of areas. However, proofs of modularity of q-hypergeometric series currently fall far short of a comprehensive theory to describe the interplay between them and automorphic forms. A recent conjecture of W. Nahm relates the modularity of such series to K-theory. In this proposal I aim to fill this gap and provide a better understanding of this interplay by building a general structural framework enveloping these q-series. For this I will employ new kinds of automorphic objects and embed the functions of interest into bigger families

A successful outcome of the proposed research will open further horizons and also answer open questions, even those in other areas which were not addressed in this proposal; for example the new theory could be applied to better understand Donaldson invariants.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

ERC-2013-StG
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-SG - ERC Starting Grant

Institution d’accueil

UNIVERSITAT ZU KOLN
Contribution de l’UE
€ 1 240 500,00
Adresse
ALBERTUS MAGNUS PLATZ
50931 KOLN
Allemagne

Voir sur la carte

Région
Nordrhein-Westfalen Köln Köln, Kreisfreie Stadt
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Bénéficiaires (1)

Mon livret 0 0