Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-06-18

Rapid parsimonious modelling

Ziel

Parsimony, manifested as variously structured sparse and low rank representations of data, has been shown as a tremendously successful model in numerous domains of science, including signal and image processing, computer vision, and machine learning problems. Despite this success, parsimonious representation pursuit approaches practiced today face serious limitations stemming from their reliance on iterative optimization. In this project, we propose to develop a novel approach to parsimonious modeling that puts the pursuit process itself at the center, surfacing crucial aspects that are currently lost deep inside the optimization machinery. First, we will study the theoretical performance limitations of pursuit processes constrained by a fixed computational complexity budget, devising bounds on the tradeoff between performance and complexity (in the spirit of the rate-distortion tradeoff). Second, we will develop a principled way to construct families of pursuit processes that approach optimal performance at fixed complexity given a specific input data distribution, and devise tools for learning such processes on real data. Abandoning iterative representation pursuit in favour of a learned fixed-complexity function can lead to a dramatic improvement in performance, enabling previously impossible applications. It will also allow including parsimonious models into higher-level optimization problems, leading to novel modeling capabilities. In lieu of the existing generative parsimonious models, we will develop novel discriminative counterparts for uni- and multi-modal data, and show their utility in large-scale similarity learning. We will also construct efficient parsimonious modeling tools for problems involving unknown data transformation or correspondence. We will apply these methods to several challenging real-world problems in signal processing, computer vision, medical imaging, and multimedia retrieval, which will be developed to the level of prototype systems.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

ERC-2013-StG
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-SG - ERC Starting Grant

Gastgebende Einrichtung

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
EU-Beitrag
€ 764 367,55
Adresse
SENATE BUILDING TECHNION CITY
32000 Haifa
Israel

Auf der Karte ansehen

Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten

Begünstigte (2)

Mein Booklet 0 0