Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

Rapid parsimonious modelling

Obiettivo

Parsimony, manifested as variously structured sparse and low rank representations of data, has been shown as a tremendously successful model in numerous domains of science, including signal and image processing, computer vision, and machine learning problems. Despite this success, parsimonious representation pursuit approaches practiced today face serious limitations stemming from their reliance on iterative optimization. In this project, we propose to develop a novel approach to parsimonious modeling that puts the pursuit process itself at the center, surfacing crucial aspects that are currently lost deep inside the optimization machinery. First, we will study the theoretical performance limitations of pursuit processes constrained by a fixed computational complexity budget, devising bounds on the tradeoff between performance and complexity (in the spirit of the rate-distortion tradeoff). Second, we will develop a principled way to construct families of pursuit processes that approach optimal performance at fixed complexity given a specific input data distribution, and devise tools for learning such processes on real data. Abandoning iterative representation pursuit in favour of a learned fixed-complexity function can lead to a dramatic improvement in performance, enabling previously impossible applications. It will also allow including parsimonious models into higher-level optimization problems, leading to novel modeling capabilities. In lieu of the existing generative parsimonious models, we will develop novel discriminative counterparts for uni- and multi-modal data, and show their utility in large-scale similarity learning. We will also construct efficient parsimonious modeling tools for problems involving unknown data transformation or correspondence. We will apply these methods to several challenging real-world problems in signal processing, computer vision, medical imaging, and multimedia retrieval, which will be developed to the level of prototype systems.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

ERC-2013-StG
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-SG - ERC Starting Grant

Istituzione ospitante

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Contributo UE
€ 764 367,55
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Beneficiari (2)

Il mio fascicolo 0 0