European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Assessing the Effects of Rising O2 on Biogeochemical Cycles: Integrated Laboratory Experiments and Numerical Simulations

Objectif

The rise of atmospheric O2 ~2,500 million years ago is one of the most profound transitions in Earth's history. Yet, despite its central role in shaping Earth's surface environment, the cause for the rise of O2 remains poorly understood. Tight coupling between the O2 cycle and the biogeochemical cycles of redox-active elements, such as C, Fe and S, implies radical changes in these cycles before, during and after the rise of O2. These changes, too, are incompletely understood, but have left valuable information encoded in the geological record. This information has been qualitatively interpreted, leaving many aspects of the rise of O2, including its causes and constraints on ocean chemistry before and after it, topics of ongoing research and debate. Here, I outline a research program to address this fundamental question in geochemical Earth systems evolution. The inherently interdisciplinary program uniquely integrates laboratory experiments, numerical models, geological observations, and geochemical analyses. Laboratory experiments and geological observations will constrain unknown parameters of the early biogeochemical cycles, and, in combination with field studies, will validate and refine the use of paleoenvironmental proxies. The insight gained will be used to develop detailed models of the coupled biogeochemical cycles, which will themselves be used to quantitatively understand the events surrounding the rise of O2, and to illuminate the dynamics of elemental cycles in the early oceans.
This program is expected to yield novel, quantitative insight into these important events in Earth history and to have a major impact on our understanding of early ocean chemistry and the rise of O2. An ERC Starting Grant will enable me to use the excellent experimental and computational facilities at my disposal, to access the outstanding human resource at the Weizmann Institute of Science, and to address one of the major open questions in modern geochemistry.

Appel à propositions

ERC-2013-StG
Voir d’autres projets de cet appel

Régime de financement

ERC-SG - ERC Starting Grant

Institution d’accueil

WEIZMANN INSTITUTE OF SCIENCE
Contribution de l’UE
€ 1 472 690,00
Adresse
HERZL STREET 234
7610001 Rehovot
Israël

Voir sur la carte

Type d’activité
Higher or Secondary Education Establishments
Chercheur principal
Itay Halevy (Dr.)
Contact administratif
Gabi Bernstein (Ms.)
Liens
Coût total
Aucune donnée

Bénéficiaires (1)