Objectif
This research program originates from a pressing practical need and from a purely new geometric perspective of discrete mathematics..
Graphs play a key role in many application areas of mathematics, providing the perfect mathematical description of all systems that are governed by pairwise interactions, in computer science, economics, biology and more. But graphs cannot fully capture scenarios in which interactions involve more than two agents. Since the theory of hypergraphs is still too under-developed, we resort to geometry and topology, which view a graph as a one-dimensional simplicial complex. I want to develop a combinatorial/geometric/probabilistic theory of higher-dimensional simplicial complexes. Inspired by the great success of random graph theory and its impact on discrete mathematics both theoretical and applied, I intend to develop a theory of random simplicial complexes.
This combinatorial/geometric point of view and the novel high-dimensional perspective, shed new light on many fundamental combinatorial objects such as permutations, cycles and trees. We show that they all have high-dimensional analogs whose study leads to new deep mathematical problems. This holds a great promise for real-world applications, in view of the prevalence of such objects in application domains.
Even basic aspects of graphs, permutations etc. are much more sophisticated and subtle in high dimensions. E.g. it is a key result that randomly evolving graphs undergo a phase transition and a sudden emergence of a giant component. Computer simulations of the evolution of higher-dimensional simplicial complexes, reveal an even more dramatic phase transition. Yet, we still do not even know what is a higher-dimensional giant component.
I also show how to use simplicial complexes (deterministic and random) to construct better error-correcting codes. I suggest a new conceptual approach to the search for high-dimensional expanders, a goal sought by many renowned mathematicians.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/fr/web/eu-vocabularies/euroscivoc.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/fr/web/eu-vocabularies/euroscivoc.
- sciences naturelles mathématiques mathématiques pures topologie
- sciences naturelles informatique et science de l'information
- sciences naturelles mathématiques mathématiques pures mathématiques discrètes théorie des graphes
- sciences naturelles mathématiques mathématiques pures mathématiques discrètes combinatoire
- sciences naturelles mathématiques mathématiques appliquées modèle mathématique
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
ERC-2013-ADG
Voir d’autres projets de cet appel
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Institution d’accueil
91904 JERUSALEM
Israël
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.