Cel
This research program originates from a pressing practical need and from a purely new geometric perspective of discrete mathematics..
Graphs play a key role in many application areas of mathematics, providing the perfect mathematical description of all systems that are governed by pairwise interactions, in computer science, economics, biology and more. But graphs cannot fully capture scenarios in which interactions involve more than two agents. Since the theory of hypergraphs is still too under-developed, we resort to geometry and topology, which view a graph as a one-dimensional simplicial complex. I want to develop a combinatorial/geometric/probabilistic theory of higher-dimensional simplicial complexes. Inspired by the great success of random graph theory and its impact on discrete mathematics both theoretical and applied, I intend to develop a theory of random simplicial complexes.
This combinatorial/geometric point of view and the novel high-dimensional perspective, shed new light on many fundamental combinatorial objects such as permutations, cycles and trees. We show that they all have high-dimensional analogs whose study leads to new deep mathematical problems. This holds a great promise for real-world applications, in view of the prevalence of such objects in application domains.
Even basic aspects of graphs, permutations etc. are much more sophisticated and subtle in high dimensions. E.g. it is a key result that randomly evolving graphs undergo a phase transition and a sudden emergence of a giant component. Computer simulations of the evolution of higher-dimensional simplicial complexes, reveal an even more dramatic phase transition. Yet, we still do not even know what is a higher-dimensional giant component.
I also show how to use simplicial complexes (deterministic and random) to construct better error-correcting codes. I suggest a new conceptual approach to the search for high-dimensional expanders, a goal sought by many renowned mathematicians.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
- nauki przyrodnicze matematyka matematyka czysta topologia
- nauki przyrodnicze informatyka
- nauki przyrodnicze matematyka matematyka czysta matematyka dyskretna teoria grafów
- nauki przyrodnicze matematyka matematyka czysta matematyka dyskretna kombinatoryka
- nauki przyrodnicze matematyka matematyka stosowana model matematyczny
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
ERC-2013-ADG
Zobacz inne projekty w ramach tego zaproszenia
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Instytucja przyjmująca
91904 JERUSALEM
Izrael
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.