Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-05-29

Stochastic differential equations in Hilbert spaces and application to collapse models

Objetivo

Within Quantum Mechanics, stochastic differential equations find useful applications in the following research fields:
- collapse models, to describe spontaneous localizations of the wave function;
- decoherence theory, to mimic the effect of the environment on an open system;
- the theory of continuous quantum measurement, to describe the action of a measuring device on a quantum system.

In the past years, in particular during his experience as a Marie-Curie fellow in Germany, the researcher has started to study, both analytically and numerically, classes of stochastic equations which are of particular physical relevance; the time evolution of specific solutions (e.g. Gaussian solutions), which are of interest in all applications, have been analyzed, together with the reduction mechanism and its stability, and the localization probabilities; applications to experiments have also been considered.

We now wish to pursue this line of research. In particular, we wish to focus on the following topics:
Problem 1. Analysis of the general solution and its properties (in particular the asymptotic behaviour) of the stochastic differential equation for the free quantum particle subject to spontaneous localization in space.
Problem 2. Analysis of the general solution and of the asymptotic behaviour of the stochastic differential equations for more complex systems, e.g. the harmonic oscillator and the hydrogen atom.
Problem 3. If there is time left, we will tackle the problem of formulating collapse models which are relativistically invariant.

Since stochastic differential equations are becoming an essential tool in the study of many physical phenomena (from non-equilibrium statistical mechanics, to biology, to mathematical finance, ...) the results of our analysis has the potentialities of being important also for research areas other than the one related to collapse models.

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

FP6-2004-MOBILITY-11
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERG - Marie Curie actions-European Re-integration Grants

Coordinador

UNIVERSITÀ DEGLI STUDI DI TRIESTE
Aportación de la UE
Sin datos
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos
Mi folleto 0 0