Ziel
Within Quantum Mechanics, stochastic differential equations find useful applications in the following research fields:
- collapse models, to describe spontaneous localizations of the wave function;
- decoherence theory, to mimic the effect of the environment on an open system;
- the theory of continuous quantum measurement, to describe the action of a measuring device on a quantum system.
In the past years, in particular during his experience as a Marie-Curie fellow in Germany, the researcher has started to study, both analytically and numerically, classes of stochastic equations which are of particular physical relevance; the time evolution of specific solutions (e.g. Gaussian solutions), which are of interest in all applications, have been analyzed, together with the reduction mechanism and its stability, and the localization probabilities; applications to experiments have also been considered.
We now wish to pursue this line of research. In particular, we wish to focus on the following topics:
Problem 1. Analysis of the general solution and its properties (in particular the asymptotic behaviour) of the stochastic differential equation for the free quantum particle subject to spontaneous localization in space.
Problem 2. Analysis of the general solution and of the asymptotic behaviour of the stochastic differential equations for more complex systems, e.g. the harmonic oscillator and the hydrogen atom.
Problem 3. If there is time left, we will tackle the problem of formulating collapse models which are relativistically invariant.
Since stochastic differential equations are becoming an essential tool in the study of many physical phenomena (from non-equilibrium statistical mechanics, to biology, to mathematical finance, ...) the results of our analysis has the potentialities of being important also for research areas other than the one related to collapse models.
Wissenschaftliches Gebiet (EuroSciVoc)
- Naturwissenschaften Mathematik reine Mathematik Algebra lineare Algebra
- Naturwissenschaften Mathematik reine Mathematik mathematische Analyse Differentialgleichungen
- Naturwissenschaften Naturwissenschaften Quantenphysik Quantenfeldtheorie
- Naturwissenschaften Naturwissenschaften klassische Mechanik statistische Mechanik
- Naturwissenschaften Naturwissenschaften theoretische Physik
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
FP6-2004-MOBILITY-11
Andere Projekte für diesen Aufruf anzeigen
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Koordinator
TRIESTE
Italien
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.