Obiettivo
Within Quantum Mechanics, stochastic differential equations find useful applications in the following research fields:
- collapse models, to describe spontaneous localizations of the wave function;
- decoherence theory, to mimic the effect of the environment on an open system;
- the theory of continuous quantum measurement, to describe the action of a measuring device on a quantum system.
In the past years, in particular during his experience as a Marie-Curie fellow in Germany, the researcher has started to study, both analytically and numerically, classes of stochastic equations which are of particular physical relevance; the time evolution of specific solutions (e.g. Gaussian solutions), which are of interest in all applications, have been analyzed, together with the reduction mechanism and its stability, and the localization probabilities; applications to experiments have also been considered.
We now wish to pursue this line of research. In particular, we wish to focus on the following topics:
Problem 1. Analysis of the general solution and its properties (in particular the asymptotic behaviour) of the stochastic differential equation for the free quantum particle subject to spontaneous localization in space.
Problem 2. Analysis of the general solution and of the asymptotic behaviour of the stochastic differential equations for more complex systems, e.g. the harmonic oscillator and the hydrogen atom.
Problem 3. If there is time left, we will tackle the problem of formulating collapse models which are relativistically invariant.
Since stochastic differential equations are becoming an essential tool in the study of many physical phenomena (from non-equilibrium statistical mechanics, to biology, to mathematical finance, ...) the results of our analysis has the potentialities of being important also for research areas other than the one related to collapse models.
Campo scientifico (EuroSciVoc)
- scienze naturali matematica matematica pura algebra algebra lineare
- scienze naturali matematica matematica pura analisi matematica equazioni differenziali
- scienze naturali scienze fisiche fisica quantistica teoria quantistica dei campi
- scienze naturali scienze fisiche meccanica classica meccanica statistica
- scienze naturali scienze fisiche fisica teoretica
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
FP6-2004-MOBILITY-11
Vedi altri progetti per questo bando
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Coordinatore
TRIESTE
Italia
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.