Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-05-29

Stochastic differential equations in Hilbert spaces and application to collapse models

Obiettivo

Within Quantum Mechanics, stochastic differential equations find useful applications in the following research fields:
- collapse models, to describe spontaneous localizations of the wave function;
- decoherence theory, to mimic the effect of the environment on an open system;
- the theory of continuous quantum measurement, to describe the action of a measuring device on a quantum system.

In the past years, in particular during his experience as a Marie-Curie fellow in Germany, the researcher has started to study, both analytically and numerically, classes of stochastic equations which are of particular physical relevance; the time evolution of specific solutions (e.g. Gaussian solutions), which are of interest in all applications, have been analyzed, together with the reduction mechanism and its stability, and the localization probabilities; applications to experiments have also been considered.

We now wish to pursue this line of research. In particular, we wish to focus on the following topics:
Problem 1. Analysis of the general solution and its properties (in particular the asymptotic behaviour) of the stochastic differential equation for the free quantum particle subject to spontaneous localization in space.
Problem 2. Analysis of the general solution and of the asymptotic behaviour of the stochastic differential equations for more complex systems, e.g. the harmonic oscillator and the hydrogen atom.
Problem 3. If there is time left, we will tackle the problem of formulating collapse models which are relativistically invariant.

Since stochastic differential equations are becoming an essential tool in the study of many physical phenomena (from non-equilibrium statistical mechanics, to biology, to mathematical finance, ...) the results of our analysis has the potentialities of being important also for research areas other than the one related to collapse models.

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

FP6-2004-MOBILITY-11
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERG - Marie Curie actions-European Re-integration Grants

Coordinatore

UNIVERSITÀ DEGLI STUDI DI TRIESTE
Contributo UE
Nessun dato
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato
Il mio fascicolo 0 0