Objectif
The origin of Harmonic Analysis goes back to the study of the heat diffusion, modeled by a differential equation, and the claim made by Fourier that every periodic function can be represented as a series of sines and cosines. In this statement we can find the motivation to many of the advances that have been made in this field. Partial Differential Equations model many phenomena from the natural, economic and social sciences. Existence, uniqueness, convergence to the boundary data, regularity of solutions, a priori estimates, etc., can be studied for a given PDE. Often, Harmonic Analysis plays an important role in such problems and, when the scenarios are not very friendly, Harmonic Analysis turns out to be fundamental. Not very friendly scenarios are those where one lacks of smoothness either in the coefficients of the PDE and/or in the domains where the PDE is solved. Some of these problems lead to obtain the boundedness of certain singular integral operators and this drives one to the classical and modern Calderón-Zygmund theory, the paradigm of Harmonic Analysis. When studying the behavior of the solutions of the given PDE near the boundary, one needs to understand the geometrical features of the domains and then Geometric Measure Theory jumps into the picture.
This ambitious project lies between the interface of three areas: Harmonic Analysis, PDE and Geometric Measure theory. It seeks deep results motivated by elliptic PDE using techniques from Harmonic Analysis and Geometric Measure Theory.This project is built upon results obtained by the applicant in these three areas. Some of them are very recent and have gone significantly beyond the state of the art. The methods to be used have been shown to be very robust and therefore they might be useful towards its applicability in other regimes. Crucial to this project is the use of Harmonic Analysis where the applicant has already obtained important contributions.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/fr/web/eu-vocabularies/euroscivoc.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/fr/web/eu-vocabularies/euroscivoc.
- sciences naturelles mathématiques mathématiques pures analyse mathématique équations différentielles équations différentielles partielles
- sciences sociales
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
ERC-2013-CoG
Voir d’autres projets de cet appel
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Institution d’accueil
28006 MADRID
Espagne
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.