Obiettivo
The origin of Harmonic Analysis goes back to the study of the heat diffusion, modeled by a differential equation, and the claim made by Fourier that every periodic function can be represented as a series of sines and cosines. In this statement we can find the motivation to many of the advances that have been made in this field. Partial Differential Equations model many phenomena from the natural, economic and social sciences. Existence, uniqueness, convergence to the boundary data, regularity of solutions, a priori estimates, etc., can be studied for a given PDE. Often, Harmonic Analysis plays an important role in such problems and, when the scenarios are not very friendly, Harmonic Analysis turns out to be fundamental. Not very friendly scenarios are those where one lacks of smoothness either in the coefficients of the PDE and/or in the domains where the PDE is solved. Some of these problems lead to obtain the boundedness of certain singular integral operators and this drives one to the classical and modern Calderón-Zygmund theory, the paradigm of Harmonic Analysis. When studying the behavior of the solutions of the given PDE near the boundary, one needs to understand the geometrical features of the domains and then Geometric Measure Theory jumps into the picture.
This ambitious project lies between the interface of three areas: Harmonic Analysis, PDE and Geometric Measure theory. It seeks deep results motivated by elliptic PDE using techniques from Harmonic Analysis and Geometric Measure Theory.This project is built upon results obtained by the applicant in these three areas. Some of them are very recent and have gone significantly beyond the state of the art. The methods to be used have been shown to be very robust and therefore they might be useful towards its applicability in other regimes. Crucial to this project is the use of Harmonic Analysis where the applicant has already obtained important contributions.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.
- scienze naturali matematica matematica pura analisi matematica equazioni differenziali equazioni differenziali parziali
- scienze sociali
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
ERC-2013-CoG
Vedi altri progetti per questo bando
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Istituzione ospitante
28006 MADRID
Spagna
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.