Ziel
The aim of this project is to develop and apply efficient mathematical tools for studying quantum and classical phenomena in a discrete setting. The motivation is on one hand that on the fundamental level it seems that space-time is discrete, because of the existence of the Planck length and its role e.g. in quantum gravity. On the other hand, even in a continuous world many important phenomena are discrete, such as phenomena occurring in crystals or in molecular or atomic chains. Thus difference equations may be more fundamental than differential ones. Moreover, differential equations often have to be solved numerically and that means that they have to be discretized, i.e. approximated by a difference system.
Our main interest is in models that can be solved exactly because of their symmetry and integrability properties. Of special interest are finite and infinite dimensional integrable and superintegrable models. Integrable systems have as many commuting integrals of motion as degrees of freedom (which may be infinite). Superintegrable systems have more integrals of motion than degrees of freedom and these integrals form interesting non-Abelian algebras. The integrals of motion are related to symmetries of the system. These may be Lie point symmetries but usually they are generalized symmetries and they form more general algebras than Lie ones. Our aim is to study and use Lie symmetries of difference equations and to discretize differential equations preserving their most important properties. These include their Lie point symmetries, generalized symmetries, integrability and superintegrability.
In order to do so we plan to host a top-class researcher from a Canadian first class laboratory who is a founder and an expert in the field of symmetry preserving discretization and construction of superintegrable systems. This will strengthen the host institution’s research skills and its relations with the laboratory of the researcher.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Naturwissenschaften Mathematik reine Mathematik mathematische Analyse Differentialgleichungen
- Naturwissenschaften Mathematik reine Mathematik Algebra
- Naturwissenschaften Naturwissenschaften theoretische Physik
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
FP7-PEOPLE-2013-IIF
Andere Projekte für diesen Aufruf anzeigen
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Koordinator
00154 ROMA
Italien
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.