Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Analysis of Boolean Functions for Algorithms and Complexity

Objectif

"The researcher, Dr. Ryan O'Donnell, received his Ph.D. from the Mathematics Department of the Massachusetts Institute of Technology (MIT) and is now an Associate Professor in the Computer Science Department of Carnegie Mellon University (CMU). Both departments are ranked #1 by the U.S. News & World Report. The host institution will be Boğaziçi University in Istanbul, Turkey.

Broadly speaking, Dr. O'Donnell's area of research expertise is Theoretical Computer Science (""TCS""), in the sense of Algorithms and Computational Complexity Theory. More precisely, Dr. O'Donnell's work takes an interdisciplinary approach, developing new tools and ideas in mathematics in order to understand the design, analysis, and limitations of basic computational algorithms. Dr. O'Donnell's mathematical research is primarily in the newly emerging area of Analysis of Boolean Functions (also known as Discrete Fourier Analysis), a subfield of of probability theory and real analysis. The overarching goal of the research proposed herein is to innovate new discrete-analytic tools for application in Theoretical Computer Science.

Key research objectives:

AAC: Prove the Aaronson-Ambainis Conjecture regarding influences of low-degree bounded polynomials. This conjecture has important consequences for Quantum Computation.

FEI: Prove the Fourier Entropy-Influence Conjecture of Friedgut and Kalai. This conjecture has important consequences for Computational Learning Theory.

SOS: Investigate the power and limitations of the Sum-of-Squares Method in combinatorial optimization. This is a very recently developed, extremely powerful optimization technique.

NPH: Prove new NP-hardness-of-approximation results for the most basic CSPs like Max-Cut and 2Sat. This is plausible in light of recently developed Boolean analysis techniques due to Dr. O'Donnell and S.O. Chan.

SSE: Explore the Small-Set Expansion Conjecture. The goal is to find new families of hard instances or to show that the SOS method succeeds."

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP7-PEOPLE-2013-IIF
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MC-IIF - International Incoming Fellowships (IIF)

Coordinateur

BOGAZICI UNIVERSITESI
Contribution de l’UE
€ 115 773,60
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée
Mon livret 0 0