Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Contenuto archiviato il 2024-06-18

Three-Photon Entanglement

Obiettivo

Quantum information and computing, mainly relying upon photonics processes, are now starting to be a commercial reality. Harnessing the full potential of quantum processes is hence one of the top-priorities from a technological point of view, as well as a strategic area for fundamental research. This motivates the current quest for developing novel sources of quantum states of light on chip, and in particular entangled photons, i.e. the building block of quantum technologies.
So far, entangled photons had been generated in pairs, since couple generation is the most straightforward nonlinear optical process. However, it has been shown that the entanglement shared among many parties (multipartite) has a richer phenomenology, and its comprehension may also boost developments in diverse fields, as it is the case for energy transfer in biological systems.
Here we propose to investigate the generation of entangled photon triplets. To date, such states have only been obtained by combining two different entangled-pair generation processes. This in turn also requires complex recombination procedures. Differently, we propose to exploit third-order nonlinearities for the direct generation of entangled photon triplets. The underlying process is a direct splitting of a single pump photon in three daughter photons, giving birth to entangled triplets from a single quantum event.
We shall exploit innovative approaches for addressing the issue of phase matching, which has hindered so far the observation of the direct three-photon splitting process. Our approach is twofold: in the realm of free-space optics we shall investigate both Bessel beam shaping and THz fields for tailoring the phase-matching. On the other hand, we shall seek for three-photon entanglement in guided-wave geometries by exploiting e.g. tapered optical fibres and integrated microring structures. This last objective targets the development of a practical, application-oriented, three-photon entanglement source.

Invito a presentare proposte

FP7-PEOPLE-2013-IIF
Vedi altri progetti per questo bando

Coordinatore

HERIOT-WATT UNIVERSITY
Contributo UE
€ 231 283,20
Indirizzo
RICCARTON
EH14 4AS Edinburgh
Regno Unito

Mostra sulla mappa

Regione
Scotland Eastern Scotland Edinburgh
Tipo di attività
Higher or Secondary Education Establishments
Contatto amministrativo
Eva Olszewska-Day (Dr.)
Collegamenti
Costo totale
Nessun dato