Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Spectral theory of random operators

Obiettivo

The theme of this proposal is the study of random operators associated with some geometric structure, and the influence of the geometry on the spectral properties of the operator. Such operators appear in problems from theoretical physics, and lead to new and interesting mathematical structures.
One circle of questions is related to random operators, which describe the motion of a quantum particle in a disordered medium, such as random band matrices. The behaviour of the particle is influenced by the underlying geometry, as quantified by the (non-rigorous) Thouless criterion for localisation in terms of the mixing time of the classical random walk; in the context of random band matrices, the predictions of the Thouless criterion are supported by additional (non-rigorous) arguments. These predictions have so far not been rigorously justified; an exception is my own result, validating it at the spectral edges. One of our goals is to develop new methods, which would be applicable in the bulk of the spectrum, for random band matrices and other operators with geometric structure.
Another circle of questions is given by random processes taking values in large random matrices. The spectral properties of the random matrix at every point of the underlying space are described by the random matrix theory; but how does the spectrum evolve along the underlying space? The richness of this question is apparent from the one-dimensional case of Dyson Brownian motion. We intend to study the local eigenvalue statistics of general matrix-valued random processes with multi-dimensional underlying space; to give a complete description of the random processes which appear in the limit, first for the spectral edges and then for the bulk of the spectrum, and to explore the appearance of these processes in a variety of basic questions of mathematical physics.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-STG - Starting Grant

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2014-STG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

QUEEN MARY UNIVERSITY OF LONDON
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 824 853,75
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 824 853,75

Beneficiari (2)

Il mio fascicolo 0 0