Projektbeschreibung
Den Code für die effiziente Zuordnung von Arbeitslasten an Hardware-Ressourcen knacken
Nicht alle Computer sind schnell. Manche scheinen langsamer zu sein als eine Schnecke, die bergauf kriecht. Die Herausforderung, Arbeitslasten effizient auf Hardware-Ressourcen zu verteilen, ist ein altes Problem in der Informatik. Vor diesem Hintergrund zielt das vom Europäischen Forschungsrat finanzierte Projekt Hi-EST darauf ab, die Herausforderung der Platzierung von Arbeitslasten auf Hardware-Ressourcen anzugehen, um die Leistung und die Ressourcennutzung zu maximieren. Konkret wird es auf vier Forschungssäulen aufbauen: überwachtes Lernen von Platzierungseigenschaften, Platzierungsalgorithmen für Aufgaben, Platzierungsalgorithmen für Daten und softwaredefinierte Umgebungen zur Durchsetzung der Platzierung. Ziel des Projekts ist es, die Forschung in den Bereichen adaptive Lernalgorithmen, Aufgabenplatzierung, Datenplatzierung und softwaredefinierte Umgebungen voranzutreiben. Dadurch soll eine effizientere Verwaltung der Computerinfrastruktur durch kontinuierliche Anpassung der Ressourcenzuweisung erreicht werden.
Ziel
Hi-EST aims to address a new class of placement problem, a challenge for computational sciences that consists in mapping workloads on top of hardware resources with the goal to maximise the performance of workloads and the utilization of resources. The objective of the placement problem is to perform a more efficient management of the computing infrastructure by continuously adjusting the number and type of resources allocated to each workload.
Placement, in this context, is well known for being NP-hard, and resembles the multi-dimensional knapsack problem. Heuristics have been used in the past for different domains, providing vertical solutions that cannot be generalised. When the workload mix is heterogeneous and the infrastructure hybrid, the problem becomes even more challenging. This is the problem that Hi-EST plans to address. The approach followed will build on top of four research pillars: supervised learning of the placement properties, placement algorithms for tasks, placement algorithms for data, and software defined environments for placement enforcement.
Hi-EST plans to advance research frontiers in four different areas: 1) Adaptive Learning Algorithms: by proposing the first known use of Deep Learning techniques for guiding task and data placement decisions; 2) Task Placement: by proposing the first known algorithm to map heterogeneous sets of tasks on top of systems enabled with Active Storage capabilities, and by extending unifying performance models for heterogeneous workloads to cover and unprecedented number of workload types; 3) Data Placement: by proposing the first known algorithm used to map data on top of heterogeneous sets of key/value stores connected to Active Storage technologies; and 4) Software Defined Environments (SDE): by extending SDE description languages with a still inexistent vocabulary to describe Supercomputing workloads that will be leveraged to combine data and task placement into one single decision-making process.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Naturwissenschaften Informatik und Informationswissenschaften künstliche Intelligenz maschinelles Lernen überwachtes Lernen
- Naturwissenschaften Informatik und Informationswissenschaften Datenwissenschaften Data Mining
- Naturwissenschaften Informatik und Informationswissenschaften künstliche Intelligenz maschinelles Lernen Deep Learning
- Naturwissenschaften Naturwissenschaften theoretische Physik Teilchenphysik Higgs-Boson
- Naturwissenschaften Informatik und Informationswissenschaften Software Anwendungssoftware
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
ERC-STG - Starting Grant
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) ERC-2014-STG
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenGastgebende Einrichtung
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
08034 BARCELONA
Spanien
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.