Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Holistic Integration of Emerging Supercomputing Technologies

Descrizione del progetto

Cracking del codice per mappare in modo efficiente i carichi di lavoro sulle risorse hardware

Non tutti i computer sono veloci: alcuni sembrano infatti essere lenti come una lumaca che striscia in salita. La sfida di mappare in modo efficiente i carichi di lavoro sulle risorse hardware è un problema di lunga data nelle scienze computazionali. In questo contesto, il progetto Hi-EST, finanziato dal Consiglio europeo della ricerca, intende affrontare la sfida della distribuzione dei carichi di lavoro sulle risorse hardware per sfruttare al massimo le prestazioni e l’utilizzo delle risorse. In particolare, si baserà su quattro pilastri di ricerca: l’apprendimento supervisionato delle proprietà di posizionamento, gli algoritmi di posizionamento per i compiti, gli algoritmi di posizionamento per i dati e gli ambienti definiti dal software per l’applicazione del posizionamento. Il progetto si propone di far avanzare le frontiere della ricerca negli algoritmi di apprendimento adattivo, nella collocazione dei compiti, nella collocazione dei dati e negli ambienti definiti dal software. L’obiettivo è quello di gestire in modo più efficiente l’infrastruttura informatica, regolando continuamente l’allocazione delle risorse.

Obiettivo

Hi-EST aims to address a new class of placement problem, a challenge for computational sciences that consists in mapping workloads on top of hardware resources with the goal to maximise the performance of workloads and the utilization of resources. The objective of the placement problem is to perform a more efficient management of the computing infrastructure by continuously adjusting the number and type of resources allocated to each workload.

Placement, in this context, is well known for being NP-hard, and resembles the multi-dimensional knapsack problem. Heuristics have been used in the past for different domains, providing vertical solutions that cannot be generalised. When the workload mix is heterogeneous and the infrastructure hybrid, the problem becomes even more challenging. This is the problem that Hi-EST plans to address. The approach followed will build on top of four research pillars: supervised learning of the placement properties, placement algorithms for tasks, placement algorithms for data, and software defined environments for placement enforcement.

Hi-EST plans to advance research frontiers in four different areas: 1) Adaptive Learning Algorithms: by proposing the first known use of Deep Learning techniques for guiding task and data placement decisions; 2) Task Placement: by proposing the first known algorithm to map heterogeneous sets of tasks on top of systems enabled with Active Storage capabilities, and by extending unifying performance models for heterogeneous workloads to cover and unprecedented number of workload types; 3) Data Placement: by proposing the first known algorithm used to map data on top of heterogeneous sets of key/value stores connected to Active Storage technologies; and 4) Software Defined Environments (SDE): by extending SDE description languages with a still inexistent vocabulary to describe Supercomputing workloads that will be leveraged to combine data and task placement into one single decision-making process.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-STG - Starting Grant

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2014-STG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

BARCELONA SUPERCOMPUTING CENTER CENTRO NACIONAL DE SUPERCOMPUTACION
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 1 467 783,00
Indirizzo
CALLE JORDI GIRONA 31
08034 Barcelona
Spagna

Mostra sulla mappa

Regione
Este Cataluña Barcelona
Tipo di attività
Research Organisations
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 1 467 783,00

Beneficiari (1)

Il mio fascicolo 0 0