CORDIS - Risultati della ricerca dell’UE
CORDIS

Multiscale modelling of stimuli-responsive nanoreactors

Descrizione del progetto

Rivoluzionare il processo di catalisi delle nanoparticelle

Il progresso e il perfezionamento delle nanoscienze svolgono un ruolo fondamentale in numerosi settori e campi, offrendo soluzioni ai problemi esistenti e fornendo opzioni alternative. Tra questi campi delle nanoscienze, la catalisi che utilizza le nanoparticelle metalliche ha un potenziale significativo per produrre benefici sostanziali, soprattutto in considerazione della crescente domanda di carburante, di bonifiche ambientali e di farmaci legati ai cambiamenti climatici. Il progetto NANOREACTOR, finanziato dal CER, mira a promuovere l’innovazione spostando in avanti i confini della catalisi delle nanoparticelle. Per raggiungere questo obiettivo, il progetto utilizzerà sistemi di trasporto termosensibili a struttura yolk-shell, migliorando così il processo catalitico con un controllo e un’efficienza migliori.

Obiettivo

The catalysis by metal nanoparticles is one of the fastest growing areas in nanoscience due to our society's exploding need for fuels, drugs, and environmental remediation. However, the optimal control of catalytic activity and selectivity remains one of the grand challenges in the 21st century.

Here, I propose to theoretically derive design rules for the optimization of nanoparticle catalysis by means of thermosensitive yolk-shell carrier systems. In the latter, the nanoparticle is stabilized in solution by an encapsulating, thermosensitive hydrogel shell. The physicochemical properties of this polymeric 'nanogate' react to stimuli in the environment and thus permit the reactant transport and the diffusion-controlled part of the catalytic reaction to be switched and tuned, e.g. by the temperature or the pH. The novel hybrid character of these emerging 'nanoreactors' opens up unprecedented ways for the control of nanocatalysis due to new designable degrees of freedom.

The complex mechanisms behind stimuli-responsive nanocatalysis call for a concerted, interdisciplinary modelling approach that has converged in my group in the recent years. In particular, it can only be achieved by combining my expertise in multiscale computer simulations of solvated polymers with the statistical and continuum mechanics of soft matter structures and dynamics. The key challenge is to integrate the molecular solvation effects and our growing knowledge of hydrogel mechanics and thermodynamics into advanced reaction-diffusion equations for a quantitative rate prediction. In addition, I envision exciting novel phenomena such as a chemo-mechanical 'self-regulated catalysis' or an amplifying 'resonant catalysis', if hydrogel response and fluctuations couple to the chemical output signal.

The expected results and design principles will help our collaborators to synthesize tailor-made, superior nanocatalysts and will advance our understanding of their structure-reactivity relationship.

Meccanismo di finanziamento

ERC-COG - Consolidator Grant

Istituzione ospitante

ALBERT-LUDWIGS-UNIVERSITAET FREIBURG
Contribution nette de l'UE
€ 558 437,50
Indirizzo
FAHNENBERGPLATZ
79098 Freiburg
Germania

Mostra sulla mappa

Regione
Baden-Württemberg Freiburg Freiburg im Breisgau, Stadtkreis
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 558 437,50

Beneficiari (2)