Descrizione del progetto
Ingegneria della deformazione e dell’indice di rifrazione: scoperte pionieristiche per l’optoelettronica al silicio
L’aumento drastico della larghezza di banda per soddisfare carichi di dati sempre maggiori e la riduzione significativa dell’energia necessaria per il trasferimento dei dati sono obiettivi fondamentali per le future reti di telecomunicazione. La fotonica al silicio è diventata rapidamente la soluzione più promettente, avvalendosi del silicio maturo come piattaforma di integrazione per i circuiti integrati fotonici. Nonostante gli enormi progressi compiuti, sono ancora molte le difficoltà da superare per raggiungere gli obiettivi. Il progetto POPSTAR, finanziato dal Consiglio europeo della ricerca, intende superarle con una nuova classe di dispositivi optoelettronici in silicio basati su effetti ottici non lineari, sfruttando l’ingegneria della deformazione e dell’indice di rifrazione. Le deformazioni 3D nelle nanostrutture fotoniche di silicio di lunghezza inferiore a quella dell’onda porteranno a scoperte pionieristiche nelle non linearità di secondo ordine ad alta efficienza e nelle variazioni di energia della banda proibita.
Obiettivo
The POPSTAR project aims at building a new class of silicon optoelectronic devices based on nonlinear optical effects for the development of high speed multiple wavelength photonic circuits in the near-IR wavelength range for data communication applications including optical interconnects and high performance computing systems. Three major cornerstones will be developed: (i) a 40Gbit/s optical modulators based on Pockels effect with energy consumption and swing voltage lower than 1fJ/bit and 1V, respectively, (ii) a high responsivity, low dark-current, low bias voltage and high bandwidth (40Gbit/s) Si photodetector based on two-photon-absorption and (iii) a low threshold (<10dBm) tunable optical parametric oscillator source based on frequency comb generation.
The ground-breaking concept of the project is to generate 3D strains in sub-wavelength silicon photonic nano-structures leading to significant breakthroughs in second-order nonlinearities efficiency (Pockels effect) and in the band-gap energy changes in order to increase or decrease two photon absorption process in silicon. The new approach developed here is to combine (i) strain engineering generated by functional oxide materials including YSZ, SrTiO3, SrHfO3 which exhibit more appropriate strain-induced characteristics in silicon than the use of silicon nitride and (ii) refractive index engineering using sub-wavelength silicon nanostructures. Generation of tunable strains in silicon with an active control using piezoelectric materials including PZT will be also develop to control the light dispersion.
Each of the three optoelectronic silicon building blocks would be world’s first demonstration according to the target performances and the used effects. Indeed, the performance targets cannot be achieved with the current state of scientific and technological backgrounds.
Finally, the project will open new horizons in the field of strained sub-wavelength silicon photonics in the near-IR wavelength range.
Campo scientifico
Programma(i)
Argomento(i)
Meccanismo di finanziamento
ERC-COG - Consolidator GrantIstituzione ospitante
75794 Paris
Francia