Skip to main content
European Commission logo print header

Low power consumption silicon optoelectronics based on strain and refractive index engineering

Opis projektu

Inżynieria odkształceń i współczynnika załamania światła: przełomowe osiągnięcia w dziedzinie optoelektroniki krzemowej

Do najważniejszych celów w zakresie przyszłych sieci telekomunikacyjnych należy radykalne zwiększenie przepustowości w celu dostosowania do stale rosnącego obciążenia danymi oraz znaczne zmniejszenie zużycia energii potrzebnej do przesyłania danych. Fotonika krzemowa szybko staje się najbardziej obiecującym rozwiązaniem, wykorzystującym dojrzały krzem jako platformę integracyjną dla fotonicznych układów scalonych. Jednak pomimo olbrzymich postępów nadal istnieje wiele wyzwań utrudniających dokonanie wymaganych przełomowych odkryć. Finansowany przez Europejską Radę ds. Badań Naukowych projekt POPSTAR ma na celu przezwyciężenie tych problemów dzięki nowej klasie krzemowych urządzeń optoelektronicznych opartych na nieliniowych efektach optycznych poprzez wykorzystanie inżynierii odkształceń i współczynnika załamania światła. Odkształcenia trójwymiarowe w krzemowych nanostrukturach fotonicznych poniżej długości fali pozwolą na osiągnięcie przełomowych wyników w zakresie wysoce efektywnych nieliniowości drugiego rzędu i zmian energii pasma wzbronionego.

Cel

The POPSTAR project aims at building a new class of silicon optoelectronic devices based on nonlinear optical effects for the development of high speed multiple wavelength photonic circuits in the near-IR wavelength range for data communication applications including optical interconnects and high performance computing systems. Three major cornerstones will be developed: (i) a 40Gbit/s optical modulators based on Pockels effect with energy consumption and swing voltage lower than 1fJ/bit and 1V, respectively, (ii) a high responsivity, low dark-current, low bias voltage and high bandwidth (40Gbit/s) Si photodetector based on two-photon-absorption and (iii) a low threshold (<10dBm) tunable optical parametric oscillator source based on frequency comb generation.
The ground-breaking concept of the project is to generate 3D strains in sub-wavelength silicon photonic nano-structures leading to significant breakthroughs in second-order nonlinearities efficiency (Pockels effect) and in the band-gap energy changes in order to increase or decrease two photon absorption process in silicon. The new approach developed here is to combine (i) strain engineering generated by functional oxide materials including YSZ, SrTiO3, SrHfO3 which exhibit more appropriate strain-induced characteristics in silicon than the use of silicon nitride and (ii) refractive index engineering using sub-wavelength silicon nanostructures. Generation of tunable strains in silicon with an active control using piezoelectric materials including PZT will be also develop to control the light dispersion.
Each of the three optoelectronic silicon building blocks would be world’s first demonstration according to the target performances and the used effects. Indeed, the performance targets cannot be achieved with the current state of scientific and technological backgrounds.
Finally, the project will open new horizons in the field of strained sub-wavelength silicon photonics in the near-IR wavelength range.

System finansowania

ERC-COG - Consolidator Grant

Instytucja przyjmująca

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Wkład UE netto
€ 1 999 300,00
Adres
RUE MICHEL ANGE 3
75794 Paris
Francja

Zobacz na mapie

Region
Ile-de-France Ile-de-France Paris
Rodzaj działalności
Research Organisations
Linki
Koszt całkowity
€ 1 999 300,00

Beneficjenci (1)