Descrizione del progetto
La ricerca studia problemi di ottimizzazione e soddisfacimento dei vincoli
I problemi di ottimizzazione e soddisfacimento dei vincoli (CSP) sono una grande famiglia di problemi computazionali, di solito classificati come trattabili (risolvibili in tempo polinomiale) o intrattabili (NP-difficile). Tuttavia, alcuni CSP resistono alla classificazione, compresi i problemi della teoria dei grafi, della combinatoria e della teoria matematica dei giochi. Il progetto AUTAR, finanziato dal CER, intende colmare questa lacuna nelle conoscenze analizzando gli algoritmi candidati che sembrano risolvere tutte le istanze e non si limitano a descrivere istanze o ipotesi difficili. L’approccio innovativo di AUTAR si baserà sulla recente scoperta che due metodi provenienti da aree diverse, i giochi di sassolini indistinguibili della logica matematica e le gerarchie di rilassamenti convessi della programmazione matematica, si equivalgono nella forza.
Obiettivo
For a large family of computational problems collectively known as constrained optimization and satisfaction problems (CSPs), four decades of research in algorithms and computational complexity have led to a theory that tries to classify them as algorithmically tractable vs. intractable, i.e. polynomial-time solvable vs. NP-hard. However, there remains an important gap in our knowledge in that many CSPs of interest resist classification by this theory. Some such problems of practical relevance include fundamental partition problems in graph theory, isomorphism problems in combinatorics, and strategy-design problems in mathematical game theory. To tackle this gap in our knowledge, the research of the last decade has been driven either by finding hard instances for algorithms that solve tighter and tighter relaxations of the original problem, or by formulating new hardness-hypotheses that are stronger but admittedly less robust than NP-hardness.
The ultimate goal of this project is closing the gap between the partial progress that these approaches represent and the original classification project into tractable vs. intractable problems. Our thesis is that the field has reached a point where, in many cases of interest, the analysis of the current candidate algorithms that appear to solve all instances could suffice to classify the problem one way or the other, without the need for alternative hardness-hypotheses. The novelty in our approach is a program to develop our recent discovery that, in some cases of interest, two methods from different areas match in strength: indistinguishability pebble games from mathematical logic, and hierarchies of convex relaxations from mathematical programming. Thus, we aim at making significant advances in the status of important algorithmic problems by looking for a general theory that unifies and goes beyond the current understanding of its components.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- scienze naturalimatematicamatematica puramatematica discretalogica matematica
- scienze naturalimatematicamatematica applicatateoria dei giochi
- scienze naturalimatematicamatematica puramatematica discretateoria dei grafi
- scienze naturalimatematicamatematica puramatematica discretacombinatoria
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Programma(i)
Argomento(i)
Invito a presentare proposte
(si apre in una nuova finestra) ERC-2014-CoG
Vedi altri progetti per questo bandoMeccanismo di finanziamento
ERC-COG -Istituzione ospitante
08034 Barcelona
Spagna