Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

K-theory, L^2-invariants, manifolds, groups and their interactions

Obiettivo

Many milestone results in mathematics emerge from interactions and transfer of techniques and methods between different areas. I want to attack outstanding problems concerning K-theory, L^2-invariants, manifolds and group theory. The time is ripe to use the exciting and profound progress that has been made during the last years in the individual areas to build new bridges, gain new insights, open the door to new applications, and to trigger new innovative activities worldwide
lasting beyond the proposed funding period.

The starting point are the prominent conjectures of Farrell-Jones on the algebraic K- and L-theory of group rings, of Baum-Connes on the topological K-theory of reduced group C^*-algebras, and of Atiyah on the integrality of L^-Betti numbers.

I intend to analyze and establish the Farrell-Jones Conjecture in other settings such as topological cyclic homology of ``group rings'' over the sphere spectrum, algebraic K-theory of Hecke algebras of totally disconnected groups, the topological K-theory of Fr'echet group algebras, and Waldhausen's A-theory of classifying spaces of groups. This has new and far-reaching consequences for automorphism groups of closed aspherical manifolds, the structure of group rings, and representation theory. Recent proofs by the PI of the Farrell-Jones Conjecture for certain classes of groups require input from homotopy theory, geometric group theory, controlled topology and flows on metric spaces, and will be transferred to the new situations. There is also a program towards a proof of the Atiyah Conjecture based on the Farrell-Jones Conjecture and ring theory. Furthermore, I want to attack open problems such as the approximation of L^2-torsion for towers of finite coverings, and the relation of the first L^2-Betti number, the cost and the rank gradient of a finitely generated group. I see a high potential for new striking applications of the Farrell-Jones Conjecture and L^2-techniques to manifolds and groups.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-ADG - Advanced Grant

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2014-ADG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITAT BONN
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 1 719 583,00
Indirizzo
REGINA PACIS WEG 3
53113 Bonn
Germania

Mostra sulla mappa

Regione
Nordrhein-Westfalen Köln Bonn, Kreisfreie Stadt
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 1 719 583,00

Beneficiari (1)

Il mio fascicolo 0 0