Skip to main content
European Commission logo print header

Synthetic Cell Biology: Designing organelle transport mechanisms

Descrizione del progetto

Ingegnerizzazione di vescicole sintetiche in cellule viventi

Le cellule contengono una complessa rete di organelli e vescicole legate alla membrana che mediano la sintesi, l’elaborazione e il trasporto di macromolecole come proteine e lipidi destinati alla secrezione o ad essere utilizzati all’interno della cellula. Questa rete svolge un ruolo cruciale in vari processi cellulari, tra cui la secrezione di ormoni e il mantenimento dell’omeostasi cellulare. Il progetto ArtifiCell, finanziato dal Consiglio europeo della ricerca, si concentra sul concetto di progettazione di nuovi meccanismi di trasporto delle vescicole nelle cellule viventi. I ricercatori propongono di ingegnerizzare il meccanismo proteico centrale coinvolto nella formazione, nell’indirizzamento e nella fusione delle vescicole. A tal fine introdurranno vescicole sintetiche a base di fosfolipidi e acidi peptidici-nucleici per reindirizzare le vescicole secretorie verso bersagli specifici.

Obiettivo

Imagine being able to design into living cells and organisms de novo vesicle transport mechanisms that do not naturally exist? At one level this is a wild-eyed notion of synthetic biology.
But we contend that this vision can be approached even today, focusing first on the process of exocytosis, a fundamental process that impacts almost every area of physiology. Enough has now been learned about the natural core machinery (as recognized by the award of the 2013 Nobel Prize in Physiology or Medicine to the PI and others) to take highly innovative physics/engineering- and DNA-based approaches to design synthetic versions of the secretory apparatus that could someday open new avenues in genetic medicine.
The central idea is to introduce DNA-based functional equivalents of the core protein machinery that naturally form (coats), target (tethers), and fuse (SNAREs) vesicles. We have already taken first steps by using DNA origami-based templates to produce synthetic phospholipid vesicles and complementary DNA-based tethers to specifically capture these DNA-templated vesicles on targeted bilayers. Others have linked DNA oligonucleotides to trigger vesicle fusion.
The next and much more challenging step is to introduce such processes into living cells. We hope to break this barrier, and in the process start a new field of research into “synthetic exocytosis”, by introducing Peptide-Nucleic Acids (PNAs) of tethers and SNAREs to re-direct naturally-produced secretory vesicles to artificially-programmed targets and provide artificially-programmed regulation. PNAs are chosen mainly because they lack the negatively charged phosphate backbones of DNA, and therefore are more readily delivered into the cell across the plasma membrane. Future steps, would include producing the transport vesicles synthetically within the cell by externally supplied origami-based PNA or similar cages, and - much more speculatively - ultimately using encoded DNA and RNAs to provide these functions.

Meccanismo di finanziamento

ERC-ADG - Advanced Grant

Istituzione ospitante

UNIVERSITY COLLEGE LONDON
Contribution nette de l'UE
€ 2 200 000,00
Indirizzo
GOWER STREET
WC1E 6BT London
Regno Unito

Mostra sulla mappa

Regione
London Inner London — West Camden and City of London
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 2 200 000,00

Beneficiari (2)