Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

High Dimensional Expanders, Ramanujan Complexes and Codes

Obiettivo

"Expander graphs have been playing a fundamental role in many areas of computer science. During the last 15 years they have also found important and unexpected applications in pure mathematics. The goal of the current research is to develop systematically high-dimensional (HD) theory of expanders, i.e. simplicial complexes and hypergraphs which resemble in dimension d, the role of expander graphs for d = 1. There are several motivations for developing such a theory, some from pure mathematics and some from computer science. For example, Ramanujan complexes (the HD versions of the ""optimal"" expanders, the Ramanujan graphs) have already been useful for extremal hypergraph theory. One of the main goals of this research is to use them to solve other problems, such as Gromov's problem: are there bounded degree simplicial complexes with the topological overlapping property (""topological expanders""). Other directions of HD expanders have applications in property testing, a very important subject in theoretical computer science. Moreover they can be a tool for the construction of locally testable codes, an important question of theoretical and practical importance in the theory of error correcting codes. In addition, the study of these simplicial complexes suggests new quantum error correcting codes (QECC). It is hoped that it will lead to such codes which are also low density parity check (LDPC). The huge success and impact of the theory of expander graphs suggests that the high dimensional theory will also bring additional unexpected applications beside those which can be foreseen as of now."

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-ADG - Advanced Grant

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2015-AdG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

THE HEBREW UNIVERSITY OF JERUSALEM
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 1 592 500,00
Indirizzo
EDMOND J SAFRA CAMPUS GIVAT RAM
91904 JERUSALEM
Israele

Mostra sulla mappa

Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 1 592 500,00

Beneficiari (1)

Il mio fascicolo 0 0