Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Currents and Minimizing Networks

Obiettivo

The core of this project is Geometric Measure Theory and, in particular, currents and their interplay with the
Calculus of Variations and Partial Differential Equations. Currents have been introduced as an effective and elegant
generalization of surfaces, allowing the modeling of objects with singularities which fail to be represented by smooth
submanifolds.
In the first part of this project we propose new and innovative applications of currents with coefficient in a group to
other problems of cost-minimizing networks typically arising in the Calculus of Variations and in Partial Differential
Equations: with a suitable choice of the group of coefficients one can study optimal transport problems such as
the Steiner tree problem, the irrigation problem (as a particular case of the Gilbert-Steiner problem), the singular
structure of solutions to certain PDEs, variational problems for maps with values in a manifold, and also physically
relevant problems such as crystals dislocations and liquid crystals. Since currents can be approximated by polyhedral
chains, a major advantage of our approach to these problems is the numerical implementability of the involved methods.
In the second part of the project we address a challenging and ambitious problem of a more classical flavor,
namely, the boundary regularity for area-minimizing currents. In the last part of the project, we investigate fine geometric properties of normal and integral (not necessarily area-minimizing) currents. These properties allow for applications concerning celebrated results such as the Rademacher theorem on the differentiability of Lipschitz functions and a Frobenius theorem for currents.
The Marie Skłodowska-Curie fellowship and the subsequent possibility of a close collaboration with Prof. Orlandi are a great opportunity of fulfillment of my project, which is original and independent but is also capable of collecting the best energies of several young collaborators.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) H2020-MSCA-IF-2016

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

UNIVERSITA DEGLI STUDI DI VERONA
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 180 277,20
Indirizzo
VIA DELL ARTIGLIERE 8
37129 Verona
Italia

Mostra sulla mappa

Regione
Nord-Est Veneto Verona
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 180 277,20
Il mio fascicolo 0 0