Obiettivo
The core of this project is Geometric Measure Theory and, in particular, currents and their interplay with the
Calculus of Variations and Partial Differential Equations. Currents have been introduced as an effective and elegant
generalization of surfaces, allowing the modeling of objects with singularities which fail to be represented by smooth
submanifolds.
In the first part of this project we propose new and innovative applications of currents with coefficient in a group to
other problems of cost-minimizing networks typically arising in the Calculus of Variations and in Partial Differential
Equations: with a suitable choice of the group of coefficients one can study optimal transport problems such as
the Steiner tree problem, the irrigation problem (as a particular case of the Gilbert-Steiner problem), the singular
structure of solutions to certain PDEs, variational problems for maps with values in a manifold, and also physically
relevant problems such as crystals dislocations and liquid crystals. Since currents can be approximated by polyhedral
chains, a major advantage of our approach to these problems is the numerical implementability of the involved methods.
In the second part of the project we address a challenging and ambitious problem of a more classical flavor,
namely, the boundary regularity for area-minimizing currents. In the last part of the project, we investigate fine geometric properties of normal and integral (not necessarily area-minimizing) currents. These properties allow for applications concerning celebrated results such as the Rademacher theorem on the differentiability of Lipschitz functions and a Frobenius theorem for currents.
The Marie Skłodowska-Curie fellowship and the subsequent possibility of a close collaboration with Prof. Orlandi are a great opportunity of fulfillment of my project, which is original and independent but is also capable of collecting the best energies of several young collaborators.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- scienze naturali matematica matematica applicata fisica matematica
- scienze naturali scienze fisiche meccanica classica meccanica dei fluidi dinamica dei fluidi
- scienze naturali informatica e scienze dell'informazione
- scienze naturali matematica matematica pura analisi matematica equazioni differenziali equazioni differenziali parziali
- ingegneria e tecnologia ingegneria dei materiali cristalli liquidi
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) H2020-MSCA-IF-2016
Vedi tutti i progetti finanziati nell’ambito del bandoCoordinatore
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
37129 Verona
Italia
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.