Objetivo
Statistical physics is a theory allowing the derivation of the statistical behavior of macroscopic systems from the description of the interactions of their microscopic constituents. For more than a century, lattice models (i.e. random systems defined on lattices) have been introduced as discrete models describing the phase transition for a large variety of phenomena, ranging from ferroelectrics to lattice gas.
In the last decades, our understanding of percolation and the Ising model, two classical exam- ples of lattice models, progressed greatly. Nonetheless, major questions remain open on these two models.
The goal of this project is to break new grounds in the understanding of phase transition in statistical physics by using and aggregating in a pioneering way multiple techniques from proba- bility, combinatorics, analysis and integrable systems. In this project, we will focus on three main goals:
Objective A Provide a solid mathematical framework for the study of universality for Bernoulli percolation and the Ising model in two dimensions.
Objective B Advance in the understanding of the critical behavior of Bernoulli percolation and the Ising model in dimensions larger or equal to 3.
Objective C Greatly improve the understanding of planar lattice models obtained by general- izations of percolation and the Ising model, through the design of an innovative mathematical theory of phase transition dedicated to graphical representations of classical lattice models, such as Fortuin-Kasteleyn percolation, Ashkin-Teller models and Loop models.
Most of the questions that we propose to tackle are notoriously difficult open problems. We believe that breakthroughs in these fundamental questions would reshape significantly our math- ematical understanding of phase transition.
Palabras clave
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
ERC-STG - Starting Grant
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) ERC-2017-STG
Ver todos los proyectos financiados en el marco de esta convocatoriaInstitución de acogida
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
91440 Bures Sur Yvette
Francia
Organización definida por ella misma como pequeña y mediana empresa (pyme) en el momento de la firma del acuerdo de subvención.
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.