Obiettivo
We are concerned with localization properties of solutions to hyperbolic PDEs, especially problems with a geometric component: how do boundaries and heterogeneous media influence spreading and concentration of solutions. While our first focus is on wave and Schrdinger equations on manifolds with boundary, strong connections exist with phase space localization for (clusters of) eigenfunctions, which are of independent interest. Motivations come from nonlinear dispersive models (in physically relevant settings), properties of eigenfunctions in quantum chaos (related to both physics of optic fiber design as well as number theoretic questions), or harmonic analysis on manifolds.
Waves propagation in real life physics occur in media which are neither homogeneous or spatially infinity. The birth of radar/sonar technologies (and the raise of computed tomography) greatly motivated numerous developments in microlocal analysis and the linear theory. Only recently toy nonlinear models have been studied on a curved background, sometimes compact or rough. Understanding how to extend such tools, dealing with wave dispersion or focusing, will allow us to significantly progress in our mathematical understanding of physically relevant models. There, boundaries appear naturally and most earlier developments related to propagation of singularities in this context have limited scope with respect to crucial dispersive effects. Despite great progress over the last decade, driven by the study of quasilinear equations, our knowledge is still very limited. Going beyond this recent activity requires new tools whose development is at the heart of this proposal, including good approximate solutions (parametrices) going over arbitrarily large numbers of caustics, sharp pointwise bounds on Green functions, development of efficient wave packets methods, quantitative refinements of propagation of singularities (with direct applications in control theory), only to name a few important ones.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- ingegneria e tecnologia ingegneria dei materiali fibre
- ingegneria e tecnologia ingegneria elettrica, ingegneria elettronica, ingegneria informatica ingegneria informatica telecomunicazioni tecnologia radio radar
- scienze naturali matematica matematica pura analisi matematica equazioni differenziali equazioni differenziali parziali
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
ERC-STG - Starting Grant
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) ERC-2017-STG
Vedi tutti i progetti finanziati nell’ambito del bandoIstituzione ospitante
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
75794 PARIS
Francia
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.