Skip to main content
Un sito ufficiale dell’Unione europeaUn sito ufficiale dell’UE
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Mechanics with Molecules

Obiettivo

In this project, single molecule-machines will be constructed and tested on a surface and one at a time, controlling the rotation and the work delivered by a single molecule-motor directly at the atomic scale. The molecule motors and gears, designed and tested by MEMO, will be further adapted to applications requiring collective and synchronous motion.
The MEMO partners will design molecular motors and gears able to perform collective and synchronous motion. They will test the rotation of such molecule-gears step-by-step according to their chemical composition, the structure of their teeth, their rotational axle, and the supporting surface. MEMO will design molecule-motors adapted to transmit single molecule motion from the atomic scale to the mesoscale (and beyond).
In MEMO, low-temperature UHV experimental methods including scanning tunneling microscope and four independent scanning probe microscopes on the same surface will be used, as well as atomic force microscope in solution. MEMO will explore how a molecule-gear with ~1 nm diameter can mechanically match a nanofabricated solid-state nano-gear with ~30 nm diameter, produced using e-beam nanolithography and He beam microscope.
MEMO will create the first miniaturization roadmap for mechanical machinery down to the atomic scale. This roadmap will be explored node by node along the MEMO project, fabricating, micro-fabricating, and nano-fabricating a planar mechanical calculator down to the atomic scale. The last node of the roadmap, using all the molecular machinery results obtained by the MEMO partners during the project, will lead to the design of a molecular Pascaline.
To disseminate the single molecule-mechanics results to industry, MEMO will organize regular Academy-Industry days with high-tech SMEs. General public dissemination will include the organization of the first and second international molecule-car race.

Campo scientifico

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.

Invito a presentare proposte

H2020-FETOPEN-2016-2017

Vedi altri progetti per questo bando

Bando secondario

H2020-FETOPEN-1-2016-2017

Meccanismo di finanziamento

RIA - Research and Innovation action

Coordinatore

TECHNISCHE UNIVERSITAET DRESDEN
Contribution nette de l'UE
€ 1 032 750,00
Indirizzo
HELMHOLTZSTRASSE 10
01069 Dresden
Germania

Mostra sulla mappa

Regione
Sachsen Dresden Dresden, Kreisfreie Stadt
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 1 032 750,00

Partecipanti (6)