Skip to main content

Precise and Robust Positioning for Automated Road Transports

Periodic Reporting for period 2 - PRoPART (Precise and Robust Positioning for Automated Road Transports)

Berichtszeitraum: 2018-12-01 bis 2019-11-30

Automated vehicles and advanced driver assistance systems contribute towards “Vision Zero”, i.e. a future where no humans are killed or impaired by accidents. Predictions indicate that these technologies will also contribute to reduced traffic density through increased road efficiency and will create new business models for mobility. High accuracy and robust positioning is a required key technology in both advanced driver assistance systems and connected autonomous vehicle applications. Today, there are several types of sensors used in autonomous vehicles such as cameras, laser scanners, ultrasonic, radar etc. The connected and automated vehicle applications currently under development are based on the cooperation between different solutions to determine the absolute position of the vehicle on the road and relative to any obstacles. No single technology can solve this in all situations, and when combining different technologies it is vital to understand the integrity of the available information. PRoPART will demonstrate the developed positioning solution in a truck driving in motorway conditions.

The overall objective in PRoPART is the development and demonstration of a high availability positioning solution for connected AD applications. It aims to develop and enhance an existing RTK (Real Time Kinematic) software solution developed by Waysure by exploiting the distinguished features of Galileo signals as well as combining it with other positioning and sensor technologies. Also, the possibility to authenticate the navigation message of Galileo and other navigation satellite systems through Open Service – Navigation Message Authentication (OS-NMA), adding resistance to certain spoofing attacks, will be explored during the project. Besides the use of vehicle on board sensors, PRoPART will also use a low-cost Ultra-Wideband (UWB) ranging solution for redundancy and robustness in areas where the coverage of GNSS is poor (e.g. in tunnels or in urban canyons). In order to define the correct requirements for the PRoPART combined positioning solution, a cooperative automated vehicle application will be defined and developed. The vehicle application will rely on the high availability positioning solution and use it to couple its ADAS system with V2X and aggregate information received from other connected vehicles and Road Side Units (RSU). As there will be a transition period where a lot of vehicles are neither connected nor automated, solutions having high impact during low penetration are in focus. Therefore, PRoPART will implement an RSU with high-precision positioning and use both UWB as well as traffic monitoring to supply ranging, object perception and EGNSS RTK correction data via ETSI ITS-G5 to the connected vehicle so that a safe decision based on robust data can be made. This means that PRoPART also will implement perception layer sensor fusion that uses information collected from external sensors as well as information from both the on-board vehicle sensors and the high availability positioning solution.
The main objectives and their related impacts can be summarized as follows:

Precise positioning with EGNSS:
o Deeply Coupled RTK Positioning using the Galileo E1 and E5 signals for carrier based positioning as well as the GPS L1, L2 and L5 signals
o Increased robustness with EGNSS using E1 and E5 signals
High Availability and Robust Positioning:
o Combining EGNSS RTK positioning with UWB ranging and vehicle motion sensors providing deeply coupled feedback
o EGNSS RTK correction data from RSU
o RSU with traffic monitoring capabilities
Cooperative Automated Vehicle Application:
o Increased cooperation between automated and non-automated vehicles
o Safer decisions for traffic manoeuvres
o More cost efficient high precision positioning

Within this project, these ambitious goals will be demonstrated for an automated collaborative lane change function using the AstaZero proving ground.
The PRoPART Use Cases and System Requirements have been defined and the demonstration scenario has been planned. The public deliverable D1.1 (Report on Vehicle Application Use Cases and Application Scenarios) was delivered and made publicly available via the PRoPART website. Based on the Use Cases the Vehicle Application System Requirements was elicitated and structured. Based on the system requirements, the PRoPART subsystem requirements were defined including requirements on Communication, perception and positioning.
The PRoPART System Architecture has been defined including the vehicle and the roadside unit architectures. The system design of V2X Communication, Positioning system, UWB System, Sensor System and High Grade IMU have been finalized. The hardware development, including UWB Nodes, Road Side Unit, GNSS platorm and antennas, has been finalized. The software development and hardware component testing and subsystem integration has been finalized. The truck platform to be used for demonstration has been selected and the demonstration scenarios have been chosen. The subsystem components have been integrated on the truck platform as well as in the 3 RSU gantries. The full system has been validated and demonstrated on the AstaZero proving ground successfully performing the selected demonstration scenarios.

An overview of the main exploitable results includes:
- Robust integrated multi-constellation, multi-frequency RTK navigation software
- V2X based Cooperative object perception and data fusion (software product)
- Advanced cooperative Roadside Unit with enhanced localization support
- UWB sensor nodes
- GNSS Receiver enhancements for Deeply Coupling
- Enhanced Perception Fusion Algorithms

The exploitation plan includes the following activities:
- Direct distribution to automotive TIER 1 suppliers as part of solution offering portfolio
- Distribution to Infrastructure operators and service providers as Off-the shelf product variant (prototype)
- Development of UWB sensor nodes HW and SW and licensing of both for vehicles. Consulting of network deployment of UWB location networks
- Consulting of system developers for advanced EGNSS products. Development of EGNSS receiver HW and SW and licensing of both
- Prototype integration and evaluation of robust positioning solution capable of supporting autonomous applications
- Development of test methods for calibration of positioning solutions, especially for connected automated vehicles
- Business opportunities in testing and validation of positioning technologies and V2X based applications at AstaZero

The main results consisting of the PPM (PRoPART Positioning Manager), RTK software, GOOSE platform, UWB ranging system, and the collaborative perception system were disseminated during the Final Demonstration Event at the AstaZero Proving Ground on November 21, where the SCANIA truck performed an automated lane change.
The progress beyond the current state of the art can be summarized as follows:

- Robust integrated multi-constellation, multi-frequency RTK navigation software

- V2X based cooperative object perception and data fusion

- Advanced cooperative Roadside Unit with enhanced localization support

- UWB ranging sensor nodes as redundancy system for robust positioning