Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Concentration, geometric and topological phenomena in nonlocal elliptic equations.

Obiettivo

In this proposal I aim to study three different phenomena in elliptic problems of nonlocal character, with the fractional Laplacian as main operator. First, we will study concentration phenomena for fractional-type Schrödinger equations, a line of research that has been recently open by authors like Valdinoci, Dipierro, del Pino, Dávila or Musso, among others. With their works as starting point, we will study existence and characterization of multi-peak solutions for the Dirichlet problem, analysis of the shape of concentration in Neumann problems and extension to general nonlinear problems in both cases.
The second goal consists on developing nonlocal analogues of the Bahri-Coron methods to analyze how the solvability of the fractional critical problem (in the sense of the Sobolev embedding) depends on the topology of the domain. By means of approximation and deformation arguments we want to prove existence of solutions if the homology of the domain with Z2 coefficients is not trivial (for instance in n=3 if it is not contractible).
Finally, in the third problem we will focus on the study of surfaces with constant nonlocal mean curvature. Based on the Aleksandrov-type results obtained by Cabre, Fall, Weth and Solà-Morales we aim to establish the existence of global continuous branches of nonlocal Delauny hypersurfaces and to analyze their limiting configuration.
To achieve these goals I plan to use a 24-months fellowship at Universitá degli Studi di Milano (UMIL, Italy) with a 5-months secondment at Universitat Politècnica de Catalunya (UPC, Spain) under the supervision of E. Valdinoci and X. Cabré respectively, world experts in the field. The multidisciplinarity, originality and innovative character of the proposal, as well as the possibility of collaborating with both professors, will place me at the end of the period of fellowship as a solid independent researcher with a high expertise level in nonlocal partial differential equations.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) H2020-MSCA-IF-2017

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

UNIVERSITA DEGLI STUDI DI MILANO
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 168 277,20
Indirizzo
Via Festa Del Perdono 7
20122 Milano
Italia

Mostra sulla mappa

Regione
Nord-Ovest Lombardia Milano
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 168 277,20
Il mio fascicolo 0 0