Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

P-adic Arithmetic Geometry, Torsion Classes, and Modularity

Ziel

The overall theme of the proposal is the interplay between p-adic arithmetic geometry and the Langlands correspondence for number fields. At the heart of the Langlands program lies reciprocity, which connects Galois representations to automorphic forms. Recently, new developments in p-adic arithmetic geometry, such as the theory of perfectoid spaces, have had a transformative effect on the field. This proposal would establish a research group that will develop and exploit novel techniques, that will allow us to move significantly beyond the state of art. I intend to make fundamental progress on three major interlinked problems.

Torsion in the cohomology of Shimura varieties: in joint work with Scholze, I proved a strong vanishing result for torsion in the cohomology of compact unitary Shimura varieties. In work in progress, we have extended this to many non-compact cases. To obtain a complete picture, I propose to develop new techniques using point-counting and the trace formula and combine them with ingredients from arithmetic geometry.

Local-global compatibility is essential for establishing new instances of Langlands reciprocity. I will use the results on Shimura varieties described above to prove local-global compatibility for torsion in the cohomology of locally symmetric spaces for general linear groups over CM fields. This is one of the fundamental questions in the field. Solving it will require progress on a diverse set of problems in representation theory and integral p-adic Hodge theory.

The Fontaine–Mazur conjecture is the most general reciprocity conjecture. Very little is known outside the case of two-dimensional representations of the absolute Galois group of the rational numbers, which relies crucially on a connection to p-adic local Langlands. I will attack the Fontaine–Mazur conjecture for imaginary quadratic fields. Some crucial inputs will come from the first two projects above.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-STG - Starting Grant

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) ERC-2018-STG

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Gastgebende Einrichtung

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 1 432 305,00
Adresse
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ London
Vereinigtes Königreich

Auf der Karte ansehen

Region
London Inner London — West Westminster
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 1 432 305,00

Begünstigte (2)

Mein Booklet 0 0