Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

P-adic Arithmetic Geometry, Torsion Classes, and Modularity

Obiettivo

The overall theme of the proposal is the interplay between p-adic arithmetic geometry and the Langlands correspondence for number fields. At the heart of the Langlands program lies reciprocity, which connects Galois representations to automorphic forms. Recently, new developments in p-adic arithmetic geometry, such as the theory of perfectoid spaces, have had a transformative effect on the field. This proposal would establish a research group that will develop and exploit novel techniques, that will allow us to move significantly beyond the state of art. I intend to make fundamental progress on three major interlinked problems.

Torsion in the cohomology of Shimura varieties: in joint work with Scholze, I proved a strong vanishing result for torsion in the cohomology of compact unitary Shimura varieties. In work in progress, we have extended this to many non-compact cases. To obtain a complete picture, I propose to develop new techniques using point-counting and the trace formula and combine them with ingredients from arithmetic geometry.

Local-global compatibility is essential for establishing new instances of Langlands reciprocity. I will use the results on Shimura varieties described above to prove local-global compatibility for torsion in the cohomology of locally symmetric spaces for general linear groups over CM fields. This is one of the fundamental questions in the field. Solving it will require progress on a diverse set of problems in representation theory and integral p-adic Hodge theory.

The Fontaine–Mazur conjecture is the most general reciprocity conjecture. Very little is known outside the case of two-dimensional representations of the absolute Galois group of the rational numbers, which relies crucially on a connection to p-adic local Langlands. I will attack the Fontaine–Mazur conjecture for imaginary quadratic fields. Some crucial inputs will come from the first two projects above.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-STG - Starting Grant

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2018-STG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 1 432 305,00
Indirizzo
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ London
Regno Unito

Mostra sulla mappa

Regione
London Inner London — West Westminster
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 1 432 305,00

Beneficiari (2)

Il mio fascicolo 0 0