Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Higher coherent coholomogy of Shimura varieties

Description du projet

La recherche sur la cohomologie des variétés de Shimura fait un pas en avant

Dans la théorie des nombres, une variété de Shimura est un analogue à plus haute dimension d’une courbe modulaire. Sa géométrie est étroitement liée à la théorie des formes automorphes sur le groupe algébrique réducteur correspondant. Elle est une partie centrale des formes automorphes, des représentations galoisiennes et des motifs. Par conséquent, elle constitue un test naturel pour étudier les relations conjecturales entre les motifs et les formes automorphes, et pour déterminer si toutes les fonctions zêta sont automorphes. Le projet HiCoShiVa, financé par l’UE, se concentrera sur la compréhension de la torsion apparaissant dans la cohomologie cohérente des variétés de Shimura. Par rapport aux études précédentes qui exploraient les classes de cohomologie de degré 0, le projet se concentrera sur des groupes de cohomologie supérieure. La principale innovation du projet sera la construction de variations p-adiques des groupes cohomologiques supérieurs cohérents.

Objectif

One can attach certain complex analytic functions to algebraic varieties defined over the rational numbers, called Zeta functions. They are a vast generalization of Riemann’s zeta function. The Hasse-Weil conjecture predicts that these Zeta functions satisfy a functional equation and admit a meromorphic continuation to the whole complex plane. This follows from the conjectural Langlands program, which aims in particular at proving that Zeta functions of algebraic varieties are products of automorphic L-functions.
Automorphic forms belong to the representation theory of reductive groups but certain automorphic forms actually appear in the cohomology of locally symmetric spaces, and in particular the cohomology of automorphic vector bundles over Shimura varieties. This is a bridge towards arithmetic geometry.
There has been tremendous activity in this subject and the Hasse-Weil conjecture is known for proper smooth algebraic varieties over totally real number fields with regular Hodge numbers. This covers in particular the case of genus one curves. Nevertheless, lots of basic examples fail to have this regularity property : higher genus curves, Artin motives...
The project HiCoShiVa is focused on this irregular situation. On the Shimura Variety side we will have to deal with higher cohomology groups and torsion. The main innovation of the project is to construct p-adic variations of the coherent cohomology. We are able to consider higher coherent cohomology classes, while previous works in this area have been concerned with degree 0 cohomology.
The applications will be the construction of automorphic Galois representations, the modularity of irregular motives and new cases of the Hasse-Weil conjecture, and the construction of p-adic L-functions.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-COG - Consolidator Grant

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2018-COG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 288 750,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 288 750,00

Bénéficiaires (1)

Mon livret 0 0