Opis projektu
Krok naprzód w badaniach nad kohomologią rozmaitości Shimury
W teorii liczb rozmaitość Shimury to analog krzywej modularnej charakteryzujący się dużą liczbą wymiarów. Jej geometria jest ściśle związana z teorią form automorficznych nad powiązaną reduktywną grupą algebraiczną. Stanowi ona środkową część form automorficznych, reprezentacji Galois i motywów. W związku z tym jest naturalnym obiektem badań nad przypuszczalnymi relacjami między motywami a formami automorficznymi. Na jej podstawie można też sprawdzić, czy wszystkie funkcje zeta są automorficzne. Finansowany ze środków UE projekt HiCoShiVa skupi się na zbadaniu torsji obecnej w koherentnej kohomologii rozmaitości Shimury. W poprzednich badaniach analizowano klasy kohomologii stopnia 0, natomiast zespół projektu zajmie się wyższymi grupami kohomologii. Główną innowacją wynikającą z projektu będzie utworzenie p-adycznych rozmaitości wyższych koherentnych grup kohomologii.
Cel
One can attach certain complex analytic functions to algebraic varieties defined over the rational numbers, called Zeta functions. They are a vast generalization of Riemann’s zeta function. The Hasse-Weil conjecture predicts that these Zeta functions satisfy a functional equation and admit a meromorphic continuation to the whole complex plane. This follows from the conjectural Langlands program, which aims in particular at proving that Zeta functions of algebraic varieties are products of automorphic L-functions.
Automorphic forms belong to the representation theory of reductive groups but certain automorphic forms actually appear in the cohomology of locally symmetric spaces, and in particular the cohomology of automorphic vector bundles over Shimura varieties. This is a bridge towards arithmetic geometry.
There has been tremendous activity in this subject and the Hasse-Weil conjecture is known for proper smooth algebraic varieties over totally real number fields with regular Hodge numbers. This covers in particular the case of genus one curves. Nevertheless, lots of basic examples fail to have this regularity property : higher genus curves, Artin motives...
The project HiCoShiVa is focused on this irregular situation. On the Shimura Variety side we will have to deal with higher cohomology groups and torsion. The main innovation of the project is to construct p-adic variations of the coherent cohomology. We are able to consider higher coherent cohomology classes, while previous works in this area have been concerned with degree 0 cohomology.
The applications will be the construction of automorphic Galois representations, the modularity of irregular motives and new cases of the Hasse-Weil conjecture, and the construction of p-adic L-functions.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
- nauki przyrodnicze matematyka matematyka czysta geometria
- nauki przyrodnicze matematyka matematyka czysta arytmetyka Funkcje L
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
ERC-COG - Consolidator Grant
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) ERC-2018-COG
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaInstytucja przyjmująca
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
75794 PARIS
Francja
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.