Descrizione del progetto
Svelare la formazione della memoria nel cervello
Gli animali hanno la capacità unica di formare ricordi e di aggiornarli in base all’esperienza. Sappiamo che i neuroni dopaminergici forniscono segnali di apprendimento per rendere possibile questo processo, ma ci mancano informazioni sul processo di calcolo. Il progetto LeaRNN, finanziato dall’UE, si propone di individuare le reti neurali responsabili di questi segnali di apprendimento nel cervello della Drosophila. I ricercatori genereranno una mappa di tutte le connessioni dopaminergiche funzionali monosinaptiche e la combineranno con mappe di attività del sistema nervoso in animali vivi durante la formazione della memoria. Questo li aiuterà a svelare il circuito di apprendimento negli animali e, nel contempo, a far progredire le neuroscienze, l’apprendimento automatico e la robotica.
Obiettivo
Forming memories, generating predictions based on memories, and updating memories when predictions no longer match actual experience are fundamental brain functions. Dopaminergic neurons provide a so-called “teaching signal” that drives the formation and updates of associative memories across the animal kingdom. Many theoretical models propose how neural circuits could compute the teaching signals, but the actual implementation of this computation in real nervous systems is unknown.
This project will discover the basic principles by which neural circuits compute the teaching signals that drive memory formation and updates using a tractable insect model system, the Drosophila larva. We will generate, for the first time in any animal, the following essential datasets for a distributed, multilayered, recurrent learning circuit, the mushroom body-related circuitry in the larval brain. First, building on our preliminary work that provides the synaptic-resolution connectome of the circuit, including all feedforward and feedback pathways upstream of all dopaminergic neurons, we will generate a map of functional monosynaptic connections. Second, we will obtain cellular-resolution whole-nervous system activity maps in intact living animals, as they form, extinguish, or consolidate memories to discover the features represented in each layer of the circuit (e.g. predictions, actual reinforcement, and prediction errors), the learning algorithms, and the candidate circuit motifs that implement them. Finally, we will develop a model of the circuit constrained by these datasets and test the predictions about the necessity and sufficiency of uniquely identified circuit elements for implementing learning algorithms by selectively manipulating their activity.
Understanding the basic functional principles of an entire multilayered recurrent learning circuit in an animal has the potential to revolutionize, not only neuroscience and medicine, but also machine-learning and robotics.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- ingegneria e tecnologiaingegneria elettrica, ingegneria elettronica, ingegneria informaticaingegneria elettronicarobotica
- scienze naturaliinformatica e scienze dell'informazioneintelligenza artificialeintelligenza computazionale
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Programma(i)
Argomento(i)
Invito a presentare proposte
(si apre in una nuova finestra) ERC-2018-COG
Vedi altri progetti per questo bandoMeccanismo di finanziamento
ERC-COG -Istituzione ospitante
CB2 1TN Cambridge
Regno Unito